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Abstract The global warming simulations of the general circulation models (GCMs) are generally
performed with different ozone prescriptions. We find that the differences in ozone distribution, especially
in the upper tropospheric and lower stratospheric (UTLS) region, account for important model discrepancies
shown in the ozone-only historical experiment of the Coupled Model Intercomparison Project Phase 5
(CMIP5). These discrepancies include global high cloud fraction, stratospheric temperature, and stratospheric
water vapor. Through a set of experiments conducted by an atmospheric GCM with contrasting UTLS ozone
prescriptions, we verify that UTLS ozone not only directly radiatively heats the UTLS region and cools the
upper parts of the stratosphere but also strongly influences the high clouds due to its impact on relative
humidity and static stability in the UTLS region and the stratospheric water vapor due to its impact on the
tropical tropopause temperature. These consequences strongly affect the global mean effective radiative
forcing of ozone, as noted in previous studies. Our findings suggest that special attention should be paid to
the UTLS ozone when evaluating the climate effects of ozone depletion in the 20th century and recovery in
the 21st century. UTLS ozone difference may also be important for understanding the intermodel
discrepancy in the climate projections of the CMIP6 GCMs in which either prescribed or interactive ozone
is used.

1. Introduction

Stratospheric ozone has undergone considerable variations over the past decades (Roth et al., 2014;
Solomon, 1999). Particularly, a severe depletion is observed in the Antarctic lower stratosphere where chlor-
ofluorocarbons (CFCs) catalytically destroy ozone in the last several decades in the twentieth century
(Solomon, 1999). The Antarctic ozone depletion has significant impacts on the Southern Hemispheric (SH)
tropospheric and surface climate, such as the position of westerly jet and storm tracks, clouds, precipitation,
and surface temperature (Bitz & Polvani, 2012; Kang et al., 2011; Son et al., 2009; Thompson et al., 2011; Turner
et al., 2009). The recovery of ozone in the 21st century is expected to have opposite effects on climate
(Arblaster et al., 2011; Perlwitz et al., 2008; Son et al., 2008). Ozone depletion in the Arctic lower stratosphere
is weaker except for some extreme ozone loss years (Hu & Xia, 2013; Manney et al., 2011). And it may also
have important impacts on tropospheric climate (Cheung et al., 2014; Karpechko et al., 2014; Xie et al.,
2016) and Arctic polar vortex position (Zhang et al., 2016).

Besides chemistry, stratospheric ozone is also influenced by dynamics. General circulation model (GCM)
simulations project a robust strengthening of the Brewer-Dobson circulation (BDC) in response to the
increase of greenhouse gases (Butchart et al., 2006; Lin & Fu, 2013; Shepherd & McLandress, 2011; Xie
et al., 2008). There is also evidence of strengthening of the BDC since 1980 in the observation (Fu et al.,
2015; Hu & Fu, 2009). The strengthening of the BDC would decrease the abundance of tropical lower strato-
spheric ozone through transportingmore air mass of less ozone from the tropical troposphere into the strato-
sphere, and an increase of ozone in the extratropics by the increase of poleward transport (Bekki et al., 2011).
It is found that this process, acting as stratospheric ozone feedback, tends to reduce SH tropospheric circula-
tion response (such as the shift of midlatitude jet) to increased CO2 (Chiodo & Polvani, 2017).

Interestingly, in a set of experiments based on the Community Atmosphere Model, CAM3 (Collins et al., 2006),
of the National Center of Atmospheric Research (NCAR), Xia et al. (2016) find that a stratospheric ozone
perturbation may significantly change global high cloud fraction, which in turn strongly affects the radiative
forcing of the ozone perturbation. The high cloud change mainly results from the changes in relative
humidity and static stability in the upper troposphere and lower stratosphere (UTLS) (Hansen et al., 1997;
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Hodnebrog et al., 2014; Xia et al., 2016). The severity of the forcing adjustment by high cloud simulated by
CAM3 motivates us to further verify the robustness and impacts of the high cloud repsonse to ozone
change, especially in the UTLS region.

Because of the large ozone variability in the UTLS region, there are significant uncertainties in both the
observed and simulated UTLS ozone trends (Harris et al., 2015; Steinbrecht et al., 2017). Intermodel compar-
isons show large differences in UTLS ozone, whichmainly depend on the details of the presentation of under-
lying processes (Gettelman et al., 2010; Hegglin et al., 2010; Ploeger et al., 2010; Riese et al., 2012). The
historical experiments of Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012) were
performed with differently prescribed UTLS ozone changes (see discussions in the following section). This
provides an opportunity to delineate the climate adjustments in response to the UTLS ozone. To verify our
findings from the Coupled Model Intercomparison Project Phase 5 (CMIP5) analysis, we conduct additional
sensitivity experiments with a newer version of the NCAR GCM, CAM5 (Neale et al., 2010) using contrasting
ozone perturbations similar to those in the CMIP5 models. In this study, we will use the archived simulations
of a few GCMs of the CMIP5, as well as CAM5, to investigate the atmospheric adjustments in response to the
stratospheric ozone perturbation. In the following sections, we will describe the CMIP5 analysis, the CAM5
experiments, and the results in order.

2. Models and Data
2.1. CMIP5 Experiments

To isolate the ozone impact, ozone-only forcing runs are required. The natural and anthropogenic forcings,
including solar, volcanic, greenhouse gases, aerosols, and land use, except for stratospheric and tropospheric
ozone are fixed at preindustrial condition (year 1850) in the simulations (referring to the website: http://www.
cesm.ucar.edu/CMIP5/forcing_information/). These runs are available from five CMIP5 models: NCAR CCSM4
and CESM1-CAM5, FGOALS-g2, and GISS E2-R, and E2-H. The simulations of these models are performed with
three different historical ozone data sets (see detailed descriptions in Table 1 in Eyring et al., 2013). As shown
in Figure 1, all these models show long-term ozone reduction in the upper stratosphere and depletion in the
Antarctic lower stratosphere. The spatial correlation between the NCARmodels and FGOALS-g2 is 0.92. And it
is about 0.86 between the NCAR and Goddard Institute for Space Studies (GISS) models. However, different
from the FGOALS-g2 and GISS models, the NCAR models show noticeable increases of ozone in the tropical
tropopause region and the extratropical lower stratosphere in the Northern Hemisphere (NH). Hence, we can
infer the effects of UTLS ozone by comparing the NCAR models with the others.

Figure 1. Annual and zonal mean fractional change of ozone from 1955 to 2000 ([O3(2000) � O3(1955)]/O3(2000) × (100/1.8)) prescribed in (a) NCAR CCSM4 and
CESM1-CAM5, (b) FGOALS-g2, and (c) GISS-E2-R and GISS-E2-H. Units: percent. The black lines indicate the corresponding tropopause for each model. The UTLS
regions subject to important ozone difference concerned here are marked by white polygons.
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2.2. GCM Experiments

To verify the effects of the UTLS ozone, we also perform sensitivity experiments with different ozone prescrip-
tions using an atmospheric GCM. The model used here is the NCAR CAM5. The CAM5 is configured at
1.9° × 2.5° horizontal resolution with 30 vertical levels. The prescribed ozone here is from the data set
described by Lamarque et al. (2010, 2011) and is the same as used by the NCAR models in CMIP5
historical experiments.

A set of experiments are performed using CAM5, with greenhouse gases, aerosols, solar constant, sea ice, and
sea surface temperature (SST), except for stratospheric ozone, fixed at year-2000 values. A control experiment
is performed with ozone prescribed to year-1955 values. A forcing experiment, O3A, has settings similar to
the control experiment, except that the ozone concentration above 200 hPa is prescribed with year-2000
values; ozone below 200 hPa is maintained at year-1955 level to eliminate the impacts of tropospheric ozone
change. The ozone difference between the O3A and control experiments is shown in Figure 2a. Comparing
O3A to control, we can infer the effects of ozone change above 200 hPa as prescribed in the NCAR GCMs in
CMIP5 experiments. The ozone depletion used in another experiment, O3B, is obtained by taking the abso-
lute value of the difference between 1955 and 2000 (Figure 2b). The difference between the O3B and control
experiments mimics the simulations of the FGOALS-g2 and GISS models in CMIP5 experiments. We can then
isolate the effect of the UTLS ozone by comparing the O3A and O3B experiments. The global mean value of
the column ozone in the control experiment is about 399.5 Dobson units (DU). The global mean ozone per-
turbations in the O3A and O3B experiments are�11.7 and�15.3 DU, respectively, which are similar to those
in the CMIP models (Eyring et al., 2013).

3. Results
3.1. CMIP5

Figure 3 shows the temperature, cloud, and water vapor changes from 1950–1959 to 1995–2004 in CCSM4,
CESM1-CAM5, FGOALS-g2, GISS-E2-H, and GISS-E2-R in the CMIP5 ozone-only historical experiments. All
these models show weak tropospheric warming and strong cooling in large parts of stratosphere in response
to the ozone changes as shown in Figure 1.

The stratospheric temperature changes simulated by these GCMs can be well explained by the radiative
heating/cooling of ozone. Stratospheric cooling occurs in the tropical and SH lower stratosphere, which is
consistent with the stratospheric ozone reduction and associated reduction in shortwave (SW) heating of
ozone in these regions. Because of the increase of ozone in the Arctic lower stratosphere in the two NCAR
models (Figure 1a), warming occurs at these two models (Figures 3a and 3d), in contrast to the cooling in
the other three models. The tropical tropopause temperature (averaged within 20°S/N) near 100 hPa is

Figure 2. Annual and zonal mean differences of the volume mixing ratio of ozone between the (a) O3A and control experiments, (b) O3B and control experiments,
and (c) (difference between the O3A and O3B experiments) × 10. Units: ppmv.
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Figure 3. Annual and zonal mean responses from 1950–1959 to 1995–2004 in (a–c) CCSM4, (d–f) CESM1-CAM5, (g–i)
FGOALS-g2, (j–l) GISS-E2-H, and (m–o) GISS-E2-R models. Panels in the left column show the temperature responses,
units: kelvin. The middle column indicates the responses of cloud fraction, units: percent. Panels in the right column show
the fractional changes in water vapor, units: percent. Regions with dots are the places where differences have statistical
significant levels higher than the 95% confidence level (absolute values of student’s t test are greater than 2.3). The green
polygons mark the same region as in Figure 1.
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noticeably decreased in FGOALS-g2, GISS-E2-H, and GISS-E2-R (�0.58 K, �0.34 K, and �0.36 K, respectively;
see Figures 3g, 3j, and 3m) due to the reduction of ozone near the tropopause in these models (Figures 1b
and 1c); this cooling is apparently much stronger than those in NCAR CCSM4 and CESM1-CAM5 (�0.04 K
and �0.02 K, respectively).

Temperature changes near tropopause modify the local relative humidity and static stability, which can
strongly impact the high clouds. The SH lower stratospheric cooling occurs in all the five models, which leads
to increases in the relative humidity and decreases in the static stability near the tropopause and thus an
increase of high clouds in the SH UTLS region. Similarly, the cooling above the tropical tropopause leads to
a global increase of high clouds in FGOALS-g2, GISS-E2-H, and GISS-E2-R (Figures 3h, 3k, and 3n). However,
the warming that occurs only in CCSM4 and CESM1-CAM5 in the NH extratropical lower stratosphere leads
to reduction in high clouds in these twomodels (Figures 3b and 3e). Because of the greenhouse effect of high
cloud, it can be deduced that the cloud longwave forcing associated with ozone change should be stronger
in FGOALS-g2, GISS-E2-H, and GISS-E2-R than that in the NCAR models.

It is generally accepted that stratospheric water vapor is constrained by the tropical tropopause temperature
(Fueglistaler et al., 2005; Randel et al., 2004). It is seen here that the UTLS ozone, via affecting the tropical tro-
popause temperature, influences the stratospheric water vapor. The stratospheric water vapor significantly
decreases in the FGOALS-g2 and GISS models (Figures 3i, 3l, and 3o) because of the significant cooling of
tropical tropopause (Figures 3g, 3j, and 3m). In contrast, it is a weak decrease in CCSM4 (Figure 3c), and a
weak increase in CESM1-CAM5 (Figure 3f), which is consistent with the corresponding tropical tropopause
temperature changes in these models. Stratospheric water vapor affects stratospheric temperature and
chemistry (Forster & Shine, 2002; Shindell, 2001) and may also have implications for the rate of global surface
warming (Solomon et al., 2010). Compared to the NCAR models, the strong stratospheric drying in the
FGOALS-g2 and GISS models indicates that the potential climatic consequences related to water vapor
may vary considerably among these models (Huang et al., 2016).

3.2. CAM5

The experiments performed with CAM5 are intent to verify the climate effects of the UTLS ozone, which are
found by the comparisons of CMIP5 models. As shown in section 2.2, the O3A experiment corresponds to the
experiments by the NCAR models (CCSM4 and CESM1-CAM5), and the O3B experiment corresponds to the
experiments by the FGOLGS-g2 and GISS models.

Because the SST is fixed in these simulations, the responses to the ozone changes in the CAM5 experiments
can be categorized as climate “adjustments” (Sherwood et al., 2015). As shown in Figure 4a, cooling occurs in
the tropical and SH lower stratosphere, and warming occurs in the Arctic lower stratosphere in the O3A
experiment. The temperature near tropopause, due to the counteracting effects of upper-level ozone
decrease and local ozone increase (Lin et al., 2017), changes little in the tropics and NH midlatitudes in the
O3A experiment. The change of the tropical tropopause temperature is about +0.04 K. This is consistent with
the results from the CMIP5 CESM1-CAM5 (Figure 3d). There are a cooling-induced increase of high clouds
over the Antarctic and a warming-induced decrease of high clouds over the Arctic in the O3A experiment
(see Figures 4b and S1a and S1b in the supporting information). The stratospheric water vapor increase is
mainly located in themiddle stratosphere in this experiment (Figure 4c), which may result from the enhanced
tropical upwelling in the stratosphere (Figure S1c).

As the sign of the tropical and NH UTLS ozone change is reversed in the O3B experiment, the UTLS
ozone decreases result in a significant cooling near the tropopause in the tropics and NH midlatitudes
(Figure 4d). The tropical tropopause temperature significantly decreases by about 0.32 K. Because the
ozone depletion in the Arctic lower stratosphere is weak in the O3B experiment, the Arctic stratospheric
radiative cooling is counteracted by the adiabatic warming, especially in the spring time (see
Figures S1f and S2). It is a statistically insignificant warming in the Arctic stratosphere. The cloud adjust-
ment in the O3B experiment, an increase of high clouds except for the Arctic region (Figure 4e), is similar
to the CMIP5 FGOALS-g2 and GISS models. The decrease of static stability in the upper troposphere and
the increase of relative humidity in the extratropics contribute to this increase of high clouds (Figures S1d
and S1e). The stratospheric water vapor is reduced by the cooling of the tropical tropopause in the O3B
experiment (Figure 4f).
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By comparing the O3A and O3B experiments, it is clear that the UTLS ozone increase results in warming in the
UTLS region and cooling in the stratosphere (Figure 4g), reduction of high clouds near the tropopause
(Figure 4h), and moistening of stratosphere (Figure 4i). Although the ozone difference between the O3A
and O3B experiments is an increase located mainly around the tropopause (Figure 3c), the stratospheric
cooling difference mainly comes from the radiative cooling induced by the less longwave absorption by
the stratospheric ozone, which is verified by the calculation using a rapid radiative transfer model, RRTM
(a validated, correlated k-distribution bandmodel) (Mlawer et al., 1997) (Figure 5a). The increase of the strato-
spheric water vapor also contributes to cooling the middle and upper stratosphere (Figure 5b). On the con-
trary, stratospheric temperature is not sensitive to the decrease of the high clouds (Figure 5c).

Figure 4. Annual and zonal mean responses in the (a–c) O3A, (d–f) O3B experiments, and (g–i) O3A-O3B. The panels in the left column show the temperature
response, units: kelvin. The middle column indicates the responses of cloud fraction, units: percent. Panels in the right column show the fractional changes in
water vapor, units: percent. Stippled are the regions where the differences are significant at the 95% confidence level.
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To test the robustness of the results, the control, O3A, and O3B experiments are also performed with a
coupled ocean-atmosphere model, CESM1.2-CAM5. Because of the small radiative forcing of ozone changes,
the global and annual mean surface temperature changes little in the O3A and O3B experiments (about
�0.1 K and �0.2 K, respectively). The responses to UTLS ozone increase, including stratospheric cooling,
reduction of high clouds, and moistening of stratosphere, are consistent with those in the fixed-SST experi-
ments (see Figure S3).

Radiative impacts are calculated for the climate adjustments associated with the ozone changes. First, we cal-
culate the instantaneous radiative forcing (Fi) of ozone change at the top of atmosphere (TOA), which
denotes the instantaneous change of TOA radiation fluxes in response to the ozone change, using RRTM.
Then, we analyze the TOA radiative flux changes due to stratospheric temperature, stratospheric water vapor,
clouds, and tropospheric temperature and water vapor using the TOA kernels introduced by Huang et al.
(2017). The analysis method follows Xia et al. (2016). The radiative effects of temperature and water vapor

are calculated as ΔRV ¼ ∂R
∂V ΔV , where

∂R
∂V is the precalculated radiative sensitivity kernel in Huang et al.

(2017) and ΔV is the change of the climate variable, such as temperature, water vapor, and surface albedo
in response to ozone change in the O3A and O3B experiments, respectively. By comparing the climate adjust-
ments to the instantaneous radiative forcing, we can make clear how do these climate processes modify the
direct climate effect of the ozone change.

The global and annual mean instantaneous radiative forcing of ozone change is �0.16 and �0.27 W m�2 in
the O3A and O3B experiments, respectively. This forcing is further modified by various adjustments. Because
of the stronger stratospheric cooling resulted from the more UTLS ozone in the O3A experiment, the strato-
spheric temperature adjustment is 0.07 W m�2 larger than that in the O3B experiment. The direct radiative

Figure 5. Annual and zonal mean changes of heating rates between the O3A and O3B experiments caused by the difference of (a) ozone, (b) water vapor, and
(c) cloud. The heating rates are calculated with RRTM. Units: 10�2 K/d. Stippled are the regions where the differences are significant at the 95% confidence level.

Table 1
Global and Annual Mean TOA Radiative Forcing and Adjustments

Fi

Stratospheric
temperature

Stratospheric
water vapor

Cloud longwave
effect

Cloud short
wave effect

Tropospheric temperature
and water vapor Fe

O3A �0.16 0.12 0.00 �0.08 0.18 �0.06 0.00
O3B �0.27 0.05 0.00 0.07 0.07 �0.08 �0.16
O3A � O3B 0.11 0.07 0.00 �0.15 0.11 0.02 0.16

Note. The columns indicate the instantaneous radiative forcing of ozone and the radiation changes caused by stratospheric temperature, stratospheric water
vapor, cloud longwave effect, cloud shortwave effect, and tropospheric temperature and water vapor, respectively. The last column is the effective forcing
(sum of all the preceding columns). Units: W m�2.
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effect of stratospheric water vapor is negligible in both experiments. The cloud longwave adjustment, mainly
resulting from changes in the high and middle clouds, is �0.08 and 0.07 W m�2 in the O3A and O3B experi-
ments, respectively. The difference between the O3A and O3B experiments, which indicates the effect of the
UTLS ozone increase, has an instantaneous radiative forcing of about 0.11 W m�2. The cloud longwave
adjustment associated with the UTLS ozone increase is �0.15 W m�2. The adjustment of the stratospheric
temperature, directly caused by the UTLS ozone increase, is 0.07 Wm�2. These results affirm that the climate
adjustments have similar magnitudes to the instantaneous forcing and can strongly modify the climatic
effects of stratospheric ozone, which is consistent with the finding of Xia et al. (2016). The effective radiative
forcing (Fe), which consists of Fi and all the adjustments (stratospheric temperature and water vapor, clouds,
tropospheric temperature and water vapor), is 0.00 and �0.16 W m�2 in the O3A and O3B experiments,
respectively (Table 1).

4. Conclusions and Discussions

In this study, we analyze the climate responses to different distributions of ozone changes, especially in the
UTLS region, using the CMIP5 ozone-only historical experiments and the experiments of a latest GCM, CAM5.
We find that the high clouds and stratospheric temperature and water vapor are sensitive to the UTLS ozone
change and strongly modify the radiative forcing of ozone.

Among the CMIP5 models analyzed, the GCMs with UTLS ozone reduction in all the latitudes (the FGOALS-g2
and GISS models) project a global increase of high clouds and a significant reduction of stratospheric water
vapor. The significant (95% confidence level) increases of the high clouds can reach about 0.4% in the
FGOALS-g2 and 1.4% in the GISS models. And the total mass of the stratospheric water vapor significantly
decreases by about 4.4% and 3.5% in the FGOALS-g2 and GISS models, respectively. In contrast, the NCAR
models (CCSM4 and CESM1-CAM5) in which the UTLS ozone increases in the tropics and NH extratropics pro-
ject an insignificant change of high clouds in these latitudes and little stratospheric water vapor change
(�0.3% and 0.4%, respectively). The high cloud change results from the UTLS temperature changes that
affect local relative humidity and static stability (Hansen et al., 1997; Hodnebrog et al., 2014; Xia et al.,
2016). The changes of high clouds in the tropical tropopause layer is well explained by the vertical tempera-
ture gradient (static stability), which is consistent with the results in Tseng and Fu (2017). Stratospheric water
vapor is mainly controlled by the tropical tropopause temperature (Fueglistaler et al., 2005; Randel et al.,
2004). The UTLS ozone, via influencing the UTLS temperature, strongly modifies the high clouds near the tro-
popause and overall water vapor amount in the stratosphere.

The impacts of the UTLS ozone change on the high clouds and stratospheric water vapor are verified by a set
of CAM5 experiments. The simulations with contrasting changes in UTLS ozone (the O3A and O3B experi-
ments) generally reproduce the responses of both high clouds and stratospheric water vapor in the CMIP5
models. By comparing the O3A to O3B experiments, we affirm the effects of the UTLS ozone increase which
leads to stratospheric cooling, reduction of high clouds, and increase of stratospheric water vapor. The cli-
mate adjustments associated with the increase of UTLS ozone are �0.15 W m�2 for the reduction of high
clouds, and 0.07 W m�2 for the stratospheric cooling. The magnitudes of these adjustments are comparable
to the instantaneous forcing of the stratospheric ozone change.

The results here point out the importance of the UTLS ozone changes during climate change, which are con-
sistent with the previous studies (Forster & Shine, 1997; Lacis et al., 1990; Riese et al., 2012), in which the direct
radiative effect of the UTLS ozone is highlighted. To better understand how the tropospheric and surface cli-
mate respond to ozone change, such as in the studies of ozone depletion in the 20th century and recovery in
the 21st century, we need to pay attention to the UTLS region. And further studies are needed to better
understand the uncertainties in the observed UTLS ozone trends and improve the ozone data sets.
Whether the future experiments in CMIP6 use prescribed ozone distribution or interactive chemistry, it is
important to elucidate the intermodel discrepancies in climate responses due to spatial differences of
ozone changes.
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