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A B S T R A C T   

Under the framework of dynamic conditional score, we propose a parametric forecasting model for Value-at-Risk 
based on the normal inverse Gaussian distribution (Hereinafter NIG-DCS-VaR), which creatively incorporates 
intraday information into daily VaR forecast. NIG specifies an appropriate distribution to return and the semi- 
additivity of the NIG parameters makes it feasible to improve the estimation of daily return in light of 
intraday return, and thus the VaR can be explicitly obtained by calculating the quantile of the re-estimated 
distribution of daily return. We conducted an empirical analysis using two main indexes of the Chinese stock 
market, and a variety of backtesting approaches as well as the model confidence set approach prove that the VaR 
forecasts of NIG-DCS model generally gain an advantage over those of realized GARCH (RGARCH) models. 
Especially when the risk level is relatively high, NIG-DCS-VaR beats RGARCH-VaR in terms of coverage ability 
and independence.   

1. Introduction 

The wide application of electronic trading systems in the financial 
market and the massive increase in the number of assets traded by 
financial institutions have made risk measurement and risk control the 
main focuses of financial regulatory agencies. According to the Basel 
Accord proposed by the Bank for International Settlements (BIS) in 
1996, the risk capital of the bank must be sufficient to make up for 99% 
of the possible losses during the 10-day holding period. This value is so 
called value-at-risk (VaR). In actual supervision, the holding period and 
confidence level may vary from situation to situation. Since then, VaR 
has become the most popular risk management tool in the financial 
market. It represents the estimated maximum loss of an asset over a 
specified holding period and a specified level of probability (Alexander, 
2008). Although Artzner, Delbaen, Eber, and Heath (1999) clearly 
stated that VaR has various theoretical flaws and may fail to accurately 
measure market risks, VaR is still one of the most important risk man
agement tools. Therefore, looking for improved VaR estimating methods 
and improving the accuracy of risk forecast have become the core issue 
in relative fields. 

Returns of stock prices are usually sampled by short time intervals 
(daily or weekly) and show non-normality. It is well known that the 
empirical distribution of returns tends to have sharp peak and fat tails, 

indicating a higher frequency of extreme returns than under the normal 
assumption. Additionally, the distribution is often left-skewed, which 
suggests that large losses occur more frequently than large profits. 
Therefore, from the perspective of risk management, the left tail of 
returns deserves more attention. 

The NIG distribution was introduced by Barndorff-Nielsen (1997), 
which can model symmetric or asymmetric distributions that may have 
heavy tails in both directions. Moreover, the NIG distribution also has 
some special theoretical properties, e.g., it is closed under affine trans
formation and convolution. The analytical tractability of NIG makes it 
possible to model financial returns in wide applications. Andersson 
(2001), Jensen and Lunde (2001), Forsberg and Bollerslev (2002), 
Venter and de Jongh (2002) specified NIG as the conditional distribution 
of the GARCH models. Eberlein and Keller (1995), Prause (1997), 
Rydberg (1997), Bølviken and Benth (2000) and Lillestøl (2000) per
formed NIG as unconditional return distribution. The tail behavior of 
NIG is usually regarded semi-heavy, i.e., it has a heavier tail than the 
Gaussian distribution. But when fitting for returns with much more 
extreme values, NIG is not as good as non-Gaussian stable distributions 
such as Pareto distribution. 

Barndorff-Nielsen (1997) further pointed out that the NIG distribu
tion is closed under convolution in the following sense: if multiple in
dependent variables are NIG-distributed with the same tail and skewness 
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parameters, and possibly different location and scale parameters, then 
the sum of the independent variables will also be NIG-distributed with 
the same tail and skewness parameters. But its location and scale pa
rameters are obtained by summing up the corresponding parameters of 
each independent variable separately. Since it is a new trend to incor
porate high frequency (HF) information of intraday return to construct 
financial models, this property of NIG provides an innovative and 
tractable method for fitting distribution of daily return by directly using 
intraday returns. 

Many researchers have made various efforts and considerations to 
improve the fitting accuracy of financial returns. One of the practices is 
to take the information of intraday returns into account and try to 
integrate their effect in the model to make a more accurate measurement 
of daily returns. Since Andersen and Bollerslev (1997), Andersen, Bol
lerslev, Diebold, and Ebens (2001), Andersen, Bollerslev, Diebold, and 
Labys (2001), Barndorff-Nielsen and Shephard (2002) pioneered the use 
of realized volatility measures as an effective and consistent estimator of 
implied volatility, the availability of high-frequency intraday data has 
aroused extensive discussion and inspired a lot of research on the 
modeling of realized volatility and prediction of daily VaR. In the 
literature of the realized volatility model, many scholars have confirmed 
that it is significantly better than the ARCH-type volatility model 
(Andersen, Bollerslev, Diebold, & Labys, 2003; Koopman, Jungbacker, & 
Hol, 2005; Martens, van Dijk, & Pooter, 2009). Andersen, Bollerslev, 
Diebold, and Ebens (2001), Engle and Gallo (2006) also highlighted the 
importance of intraday information in the studies of realized volatility. 
Bee, Dupuis, and Trapin (2019) proposed a dynamic structure for ex
ceedance modeling based on HF data by adding realized volatility to the 
peaks over threshold (POT) model. Although it is not common to directly 
use HF data to improve the risk management model, currently more and 
more studies try to extend the models constructed originally based on 
low frequency (LF) data in this way. Shephard and Sheppard (2010), 
Noureldin, Shephard, and Sheppard (2012), Hansen, Lunde, and Voev 
(2014) considered using HF data to fit the distribution of conditional 
return, further demonstrating the significance of HF data. Cai, Kim, 
Shin, and Zhang (2019) implemented a functional autoregressive model 
for VaR forecasts by estimating the possibility density function of 
intraday returns. They proved that the model incorporated HF infor
mation could enhance the coverage of the daily VaR forecasts. Song, 
Tian, and Li (2021) also constructed a VaR forecasting model combined 
with intraday returns and driven by dynamic conditional score. This 
parametric model assumed that the distribution of return follows a 
censored generalized Pareto distribution. 

In addition to enriching the content of the parametric model for 
returns, another effort to enhance the precision of estimation is to find a 
robust and available tool to estimate the core parameters appropriately. 
In financial risk management, it is crucial to capture the motion law of 
the parameters that control the shape of returns. However, there is no 
clear standard for setting a certain parameter as static or dynamic and 
many empirical studies confirmed that it should depend on the specific 
situation. Some financial models (Barndorff-Nielsen & Shephard, 2002; 
Bee et al., 2019; Bollerslev, 1986; Engle, 1982; Harvey & Shephard, 
1996; Nelson, 1991) assumed the scale parameter of the distribution is 
dynamic and the shape parameter is constant. But others (Massacci, 
2017; Ayala & Blazsek, 2019; Harvey & Ito, 2020) set all parameters 
included in the distribution to be dynamic. Those models with dynamic 
parameters can be divided into parameter-driven models and 
observation-driven models (Cox, 1981). The latter includes autore
gressive conditional heteroscedasticity (ARCH) model (Engle, 1982), 
generalized autoregressive conditional heteroscedasticity (GARCH) 
model (Bollerslev, 1986), and dynamic-conditional-score (DCS) model 
(Creal, Koopman, & Lucas, 2012; Harvey, 2013). What they have in 
common is that the variation of parameters is driven by the function of 
the observations. Recently, DCS has become popular in solving dynamic 
parametric problems since its mechanism to update the parameters over 
time is the scaled score of the likelihood function (Creal et al., 2012). 

Based on this score-driven framework, Zhang and Bernd (2016), and 
Massacci (2017) extended two dynamic models to estimate the proba
bility of extreme financial returns and the size of the exceedance, 
respectively. Ayala and Blazsek (2019) proposed a DCS model based on 
the NIG distribution, which can simultaneously update the volatility 
through scale parameter and shape parameter. Encouraged by the fact 
that the DCS model is adaptable to time-varying data and has a higher 
efficiency of parameter estimation, we consider constructing models 
under its framework to estimate the dynamic parameters. 

The main contributions of our study include: first, the method of 
using the conditional distribution function to estimate VaR considers the 
time-varying property of parameters, which means that not only the 
time-varying mean and variance could be determined, but also the time- 
varying property of each moment. Second, we extend the method of 
using intraday returns to infer the distribution of daily returns. Ac
cording to the strong form of efficiency market hypothesis, moment- 
specific returns are independent from each other. Therefore, we could 
assume that the conditional distribution of intraday returns follows the 
independent NIG distribution. This assumption makes it easy to simulate 
daily returns by directly adding up the intraday returns or to determine 
the parameters in distribution of daily returns in terms of parameters in 
individual distribution of intraday returns. However, high-frequency 
return series in reality often have correlation, which may be related to 
that they all follow the same intraday cycle structure. Therefore, we will 
consider adding a deterministic periodic factor to the DCS model to 
reduce the correlation of sequences as much as possible, so as to make 
this simulating method more reasonable. As the literatures indicate, 
using intraday data to estimate the distribution of daily returns makes 
sense due to the abundant information provided by high-frequency 
trading. Compared with modeling based on historical daily return, 
models incorporated intraday return can reflect more real risk fluctua
tion within a day, thereby giving more accurate VaR estimates and 
forecasts. Third, under the framework of DCS, we capture the dynamic 
evolution process of time-varying parameters in a more precise way and 
obtain their one-step forecasts so that the daily VaR forecast can be 
produced by calculating the quantile of the predicted distribution of 
daily return. Finally, we use this model to conduct an empirical analysis 
of the Chinese stock market, and compare the performance of the NIG- 
DCS-VaR model and the realized-GARCH-VaR model through several 
backtestings as well as the model confidence set (MCS) approach. The 
results confirm that our model gain an advantage in estimating the risk 
of tail returns, which can be seen as an effective contribution to risk 
management. 

The remainder of the paper is organized as follows. Section 2 outlines 
our NIG-DCS-VaR model. It first gives the overview of NIG distribution, 
describes the mechanism of DCS model based on NIG distribution and its 
maximum-likelihood (ML) estimator. Then it introduces a parametric 
and a non-parametric methods of degerming the distribution of daily 
return based on intraday return. Finally it illustrates three classic test 
methods and MCS approach for measuring the effect of out-of-sample 
VaR forecasts. Section 3 details the stock data used in empirical anal
ysis and the corresponding data processing. Section 4 where the test 
results indicates that the out-of-sample VaR forecasts obtained by the 
model containing HF data are less likely to underestimate risk than that 
from model constructed by daily returns, and NIG-DCS-VaR beats 
RGARCH-VaR in terms of coverage ability and independence at some 
risk level. Section 5 concludes our work. Some supplementary materials 
are relegated to the Appendix. 

2. Methodology 

2.1. NIG distribution 

The NIG distribution is essentially a special case of the GH family. 
The univariate GH distribution can be parameterized in a variety of 
ways. The more common expression of the probability density function 
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of GH was introduced by Prause, k. (1999), and can be written as: 

fx(x) =

(
α2 − β2)λ

2Kλ− 1
2
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In the above expression, Kj denotes the modified Bessel function of 
the third kind of order j (Abramowitz & Stegun, 1972).The relation 
between the parameters should satisfied that: when λ > 0, then δ ≥ 0 ， 
|β| < α; when λ = 0, then δ > 0 ， |β| < α; when λ < 0，then δ > 0 ， |β| 
≤ α. 

Barndorff-Nielsen and Blæsild (1981) also stated that the GH distri
bution can be represented as a mixed distribution of the normal 
variance-mean and the generalized inverse Gaussian, which means that 
the generalized hyperbolic variable X can be expressed as: 

X = μ+ βZ +
̅̅̅
Z

√
Y, (2)  

where Y~N(0,1), Z~GIG(λ,δ,γ), with Y and Z independent and γ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α2 − β2

√
. Eq. (2) infers that X ∣ Z = z~N(μ + βz,z). GIG(⋅) denotes the 

Generalized Inverse Gaussian (GIG) proposed by Barndorff-Nielsen 
(1977), having density: 

f (z; λ, δ, γ) =
(γ

δ

)λ zλ− 1

2Kλ(γδ)
exp

{

−
1
2
(
δ2z− 1 + γ2z

)
}

(3) 

Letting λ = − 1
2, then GH distribution evolves into a special case, 

namely the normal inverse Gaussian distribution. The modified Bessel 
function has properties (Blæsild, 1981): K1

2
(x) = 2− 1

2
̅̅̅
π

√
x− 1

2exp( − x) and 
Kν(x) = K− ν(x).Then the density function of NIG will be: 

fx(x) =
δαexp
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√ )
K1

(

α
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ2 + (x − μ)2
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(4) 

If X obeys the NIG distribution, it can be written as X~NIG(μ,δ,α,β), 
where μ, δ, α, β respectively represent the parameters of location, scale, 
tail, and skewness that determine the form of distribution. The attractive 
property of the NIG distribution is that under the convolution of inde
pendent random variables Y1 and Y2, the NIG distribution is closed: 

Y1 ∼ NIG(μ1, δ1, α, β), Y2 ∼ NIG(μ2, δ2, α, β)⇒Y1 +Y2

∼ NIG(μ1 + μ2, δ1 + δ2,α, β) (5) 

When there exists a variable Y =
∑

i=1
n Yi，and Yi, i = 1, ⋯, n is in

dependent and NIG-distributed，then Y~NIG(
∑

i=1
n μi,

∑
i=1
n δi,α,β), δi >

0, 0 < |β| < α and its density function can be:   

The NIG distribution also has the scaling poverty that X~NIG 
(μ,δ,α,β) ↔ cX~NIG(cμ,cδ,α/c,β/c), where c is a constant. These two 
special properties make NIG look like a stable distribution, since if there 
exist constants cn > 0 and dn ∈ ℝ, the stable variable X will satisfy X1 +

⋯+ Xn ⇒dcnX+ dn, where “⇒d” means that the distributions are the 
same and cn = n1/θ, θ ∈ (0,2].And X1, X2, ⋯Xn are independent of each 

other and distributed the same as X. But actually, although the NIG 
distribution satisfies semi-additivity (convolutional closure), the general 
form of its distribution is not stable in terms of two aspects, see proof in 
Appendix A.1. 

Nevertheless, in some special cases, there is a connection between 
NIG and the stable distribution. For example, Gaussian distribution can 
be regarded as a special case of NIG distribution, that is, if X~NIG 
(μ,δ,α,β), when β = 0, α → ∞ and δ/α = σ2, the random variable X~N 
(μ,σ2). Similarly, the Cauchy distribution is also a special case of the NIG 
distribution, i.e., NIG(0,0,1,0) is a Cauchy distribution. The normal 
distribution and the Cauchy distribution are both stable distributions, 
and their probability density can give a closed-form analytical solution. 
In this study, we are only concerned with the general form of NIG, so we 
deliberately make a clear distinction between it and the stable distri
bution to highlight its unique properties. 

Let Rτ, t denote the τth observation of intraday return on the tth day, 
where t = 1, …, T, τ = 1, …, N, and N varies due to the frequency of the 
intraday return. Denote Rt as the daily return on the tth day. The return 
mentioned in this article refers to the logarithmic return, that is, the 
difference between the logarithmic prices at two moments. Hence, the 
daily return is defined as Rt = logPt − logPt− 1, and the intraday return can 
be thus obtained by Rτ, t = log Pτ, t − logPτ− 1, t, where P refers to the 
closing price at that time. In this case, daily return is equivalent to the 

sum of intraday return, i.e., Rt = logPt − logPt− 1 =
(

logPN,t −

logPN− 1,t

)
+

(
logPN− 1,t − logPN− 2,t

)
+ …+

(
logP2,t − logP1,t

)
+

(
logP1,t − logPN,t− 1

)
=

∑N
τ=1Rτ,t,where logPt = log PN, t and logPN, t− 1 =

log Pt− 1. This is also the foothold of our research. 
Timeseries of daily returns and intraday returns on the time scale in 

days are supposed to have a certain auto-correlation in accordance with 
stock market’s long memory, which is the theoretical basis of the 
following NIG-DCS model. In addition to this implicit assumption, we 
assume that the intraday returns at different moments on the same day 
are independent of each other and are all NIG-distributed with the same 
parameters α and β, where α and β are determined by the NIG distri
bution of daily return on day t. This is because we regard intraday 
returns within the same day as different components to form the daily 
return and they reflect specific patterns at their specific moment, but 
they also need to be generally consistent with the daily return in terms of 
their shape. This independence assumption means that the intraday 
return Rτ, t is auto-correlated but is not cross-correlated, i.e., Rτ, t might 
be correlated with Rτ, t+1 but be independent of Rj, t (j ∕= τ). However, in 
real financial markets, this assumption may be difficult to be satisfied. 
Considering that real intraday returns may be cross-corelated, we will 
make some improvements to the model to reduce the possible impact, 
see details in section 2.2. More importantly, under such an assumption, 
we can better explore the possibility of the application of NIG when its 

property of “closing” under summation and scaling is highlighted, since 
the daily return could be re-estimated by directly summing up the 
intraday returns. Cases under the assumption of non-independence will 
be discussed in our future work. 

2.2. NIG-DCS model 

We establish a model driven by DCS to estimate the time-varying 

gY(y) =
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i=1δiαexp
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parameters in eq. (4). The score-driven mechanism is widely adopted 
because the score naturally drive the parameters to update by linking 
their dynamics to the likelihood probability of the historical observa
tions (Creal et al., 2012). Blasques, Koopman and Lucas (2015) also 
stated that DCS method may be the optimal method in information 
theory since its updating mechanism could significantly reduce the 
differences between the estimated conditional density and the actual 
conditional density. Although GARCH models has been proved to be 
effective in fitting financial returns and giving accurate forecasts in 
previous studies (Avdulaj & Barunik, 2015; Creal, Koopman, & Lucas, 
2011; Gao & Zhou, 2016), Harvey and Sucarrat (2014) believed that the 
DCS model can be superior to it because DCS works better on estimating 
the heavy tails of returns. Additionally, the scheme of DCS allows for the 
one-step prediction that could form a series out-of-sample VaR forecasts 
by apply a rolling-window procedure. In DCS, the common form of re
turn (Creal et al., 2011, 2012) is: 

Rt = μt + ξt = μt + exp(λt)ϵt (7)  

where μt, exp(λt) = δt respectively represent the location and scale of the 
distribution, and the exponential form of λt makes the scale always 
larger than 0. The main object of DCS modeling is the random volatility 
ϵt. If Rt~NIG(μt,δt,αt,βt), in order to satisfy δt > 0 as well as 0 < |βt| < αt, 
we introduce anther two parameters vt and ηt to re-define tail and 
skewness parameters. Let: 

δt = eλt ,αt = evt − λt , βt = evt − λt ⋅tanh(ηt) = evt − λt ⋅
eηt − e− ηt

eηt + e− ηt
(8) 

Namely, ϵt~NIG(0,1,evt,evt tanh (ηt)). The exponential forms of new 
parameters make δt and αt always larger than 0. And tanh(η) ensures that 
|βt| is always smaller than αt, since tanh(η) ∈ (− 1,1). Under this defi
nition, there is no need to impose additional constraints on the estima
tion of NIG. From eq. (4), the logarithmic conditional probability density 
of Rt becomes:   

For the four time-varying parameters in (9), the law of motion is 
specified in terms of DCS framework. The main feature of DCS is that the 
evolution of the time-varying vector is driven by the score of the con
ditional distribution (9), an autoregressive component, and other 
possible explanatory variables. The score refers to the first-order partial 
derivative of the conditional distribution with respect to the time- 
varying parameter. Since there may exist annual cycle structure in 
returns during a long period of time, in order to ensure the independence 
of the time series, we refer to the practice of Harvey and Ito (2020) and 
consider adding the seasonal factor qt to the autoregressive equation of 
scale parameter. The deterministic qt can be easily obtained by decom
posing the time series. Then the dynamic laws of the four time-varying 
parameters μt, λt, vt, and ηt are respectively specified as:  

⎧
⎪⎪⎨

⎪⎪⎩

μt = A1 + B1μt− 1 + C1sμt

λt = A2 + B2λt− 1 + C2sλt + qt
vt = A3 + B3vt− 1 + C3svt

ηt = A4 + B4ηt− 1 + C4sηt

, (10)  

where sμt, sλt, svt and sηt are the so-called score factors of the corre
sponding parameters and they can be calculated by the following for
mulas:   
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2 + (rt − μt)

2
√ )

+ βt(rt − μt)

= evt
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − tanh2(ηt)

√
+ vt − lnπ −

1
2
ln
(
e2λt +(rt − μt)

2 )
+ lnK1

(

evt − λt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

e2λt + (rt − μt)
2

√ )

+ evt − λt tanh(ηt)(rt − μt) (9)   

S. Song and H. Li                                                                                                                                                                                                                               



International Review of Financial Analysis 82 (2022) 102180

5

sηt = evt − λt sech2(ηt)⋅(rt − μt) − evt tanh(ηt)sech(ηt) (15) 

The steps of modeling intraday return using NIG-DCS is similar to the 
above. But as mentioned in 2.1, if it is assumed that the intraday returns 
on day t are NIG-distributed with the same tail parameters and skewness 
parameters that determined by the daily return on day t, namely, Rτ, 

t~NIG(μτ, t,eλτ, t,evτ, t− λτ, t = evt− λt,evτ, t− λτ, t tanh (ητ, t) = evt− λt ⋅  tanh (ηt)), 
then ητ, t could be directly determined by ηt, while μτ, t and vτ, t are still 
driven by DCS: 
{

μτ,t = A5 + B5μτ,t− 1 + C5sμτ,t

vτ,t = A6 + B6vτ,t− 1 + C6svτ,t
, (16)  

then λτ, t can be indirectly obtained from evt− λt and vτ, t. The variation of 
λτ, t ensures that intra-day returns have constant tail and skewness pa
rameters when vτ, t changes. Here, the reason why we let vτ, t rather than 
λτ, t be DCS-driven is that the estimated intraday return under this 
scheme is much closer to the actual return. This setting is proved to be 
more reasonable by empirical results. Finally, maximum likelihood 
method could hence be performed to estimate the parameter θ involving 
in the NIG-DCS model. Formally: 

θ̂ = argmax
∑n

t=1
ln

[

ft(rt|r1,…, rt− 1)，t = 1, 2, 3…T (17)  

2.3. Intraday-return-based estimation for daily VaR 

Predicting daily VaR in light of intraday return requires careful 
consideration due to the non-normality and randomness of HF data. 
Since high-frequency data is often affected by market microstructure 
noise (Andersen, Bollerslev, Diebold, & Ebens, 2001), which sampling 
frequency is used to obtain intraday returns is also a key issue. Two 
methods of estimating the distribution of daily return incorporating 
intraday return are introduced in the following. 

From the assumption of intraday return and the special property of 
NIG mentioned in section 2.1, it follows that Rt~NIG(

∑
τ=1
N μτ, t,

∑
τ=1
N eλτ, 

t,evt− λt,evt− λt ⋅  tanh (ηt)), since Rt =
∑

τ=1
N Rτ, t.This means that the dis

tribution of daily returns is adjusted or improved through the changes in 
location and scale parameters. Common statistical software such as R, 
etc. can explicitly calculate the quantile of the distribution based on the 
known specification and known parameters. Since VaR at the level α is 
essentially the αth quantile of the distribution, the daily VaR can hence 
be obtained by this method. 

The other method is non-parametric and is based on bootstrap, 
which can generate a distribution of daily returns by repeated random 
sampling. Compared with the parametric model, this method only as
sumes that the intraday returns follow the NIG distribution. But there is 
no need to assume that its tail parameters and skewness parameters are 
consistent with those in the distribution of the corresponding daily re
turn. And similarly, the deterministic component of seasonal factor is 
also included in the model to reduce the possible correlation of HF 

returns. Hence, eq. (16) in this situation should be expanded as: 
⎧
⎪⎪⎨

⎪⎪⎩

μτ,t = A5 + B5μτ,t− 1 + C5sμτ,t

λτ,t = A6 + B6λτ,t− 1 + C6sλτ,t + qτ,t
vτ,t = A6 + B6vτ,t− 1 + C6svτ,t

ητ,t = A4 + B4ητ,t− 1 + C4sητ,t

(18) 

The specific steps of bootstrap can see from Song et al. (2021). 
Both of the above methods can fit daily returns combining the in

formation of intraday information. But when conducting empirical 
study, we consider the parametric method to highlight the attractive 
property of NIG and enhance the efficiency of estimation. 

The proposed NIG-DCS-VaR model is a tool to measure daily VaR 
based on intraday information. The model first uses NIG distribution to 
fit intraday returns and daily returns, which can well capture the tail risk 
of returns; then, in light of the mechanism of the dynamic conditional 
score, the motion laws of time-varying parameters are specified, and the 
maximum likelihood method is applied to estimate the optimal results; 
after that, we propose two methods: parametric method and bootstrap 
method, which can integrate the estimated results of multiple intraday 
return to fit the daily return. Finally, daily VaR is easily obtained by 
calculating the quantile of the fitted distribution. 

Due to the adoption of the DCS mechanism, the NIG model is more 
sensitive to the volatility of risk, and the incorporation of high-frequency 
information allows it to measure risk from a more microscopic 
perspective. Therefore, the NIG-DCS-VaR model can theoretically pro
vide a more accurate forecast of daily VaR, thereby contributing to the 
improvement of VaR measurement tools. 

2.4. Backtesting and MCS for VaR 

In order to verify whether the results of VaR estimates are consistent 
and reliable, several appropriate backtestings are mainly used. We will 

Table 1 
Descriptive Statistics, Daily Returns, SH000001 and SZ399001, 2009–2015.   

sh000001 pt sh000001 ln 
(pt/ pt-1) 

sz399001 pt sz399001 ln 
(pt/ pt-1) 

Start date 2009-01-05 2009-01-05 2009-01-05 2009-01-05 
End date 2015-12-31 2015-12-31 2015-12-31 2015-12-31 
Sample size 1700 1700 1700 1700 
Minimum 1880.72 − 0.0815 6634.88 − 0.1103 
Maximum 5178.19 0.0547 18,211.76 0.05701 
Average 2685.763 -1e-04 10,502.45 -1e-04 
Standard 

deviation 
603.0049 0.0128 2160.589 0.0151 

Skewness 1.3288 − 0.7813 0.4623 − 0.8916 
kurtosis 2.0434 4.6337 − 0.1824 5.4299 
ADF statistic − 1.783 

(0.6703) 
− 8.2203 
(<0.01**) 

− 2.4815 
(0.3745) 

− 11.595 
(<0.01**) 

Note: *, **, and *** represent statistical significance levels of 5%, 1%, and 0.1%, 
respectively. The p-value of the relevant test is indicated by the value in 
parentheses. 

sλt =
∂ln[ft(rt|r1,…,rt− 1)]

∂λt
= − 1+

(rt − μt)
2e− 2λt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+(rt − μt)
2e− 2λt

√ − evt − λt tanh(ηt)
(
rt − μτ,t

)
+

(rt − μt)
2evt − 2λt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+(rt − μt)
2e− 2λt

√ ⋅
K(0)

[

evt − λt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
(
rt − μτ,t

)2
√ ]

+K(2)
[

evt − λt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+(rt − μt)
2

√ ]

2K(1)

[

evt − λt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+(rt − μt)
2

√ ]

(13)  

svt =
∂ln[ft(rt|r1,…,rt− 1)]

∂vt
=1+evt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − tanh2(ηt)

√
− evt − λt tanh(ηt)(rt − μt)− evt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+(rt − μt)
2e− 2λt

√

⋅
K(0)

[

evt − λt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+(yt − μt)
2

√ ]

+K(2)
[

evt − λt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+(rt − μt)
2

√ ]

2K(1)

[

evt − λt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+(rt − μt)
2

√ ] (14)   

S. Song and H. Li                                                                                                                                                                                                                               



International Review of Financial Analysis 82 (2022) 102180

6

apply the LR of Unconditional Coverage test (LRUC), the LR of condi
tional Coverage test (LRCC), and the Dynamic Quantile test (DQ) these 
three backtestings to measure the dynamic VaR forecasts obtained by 
NIG-DCS-VaR model. Kupiec (1995) proposed LRUC as a statistical tool 
to determine whether the model will be accepted or rejected by judging 
whether the number of VaR exceptions, i.e. days when negative returns 
exceed VaR estimates, is reasonable or not. Christoffersen (1998) came 
up with the LRCC to test not only the frequency of VaR violations but 
also the time when they occur. DQ test proposed by Engle and Man
ganelli (2004) is mainly used to check the independence of the VaR 
series. It constructs indicators of occurrence of the extreme events. If 
there exists correlation between these indicators, the dynamic VaR 
model will be proved to be invalid. 

However, it is difficult to intuitively compare the quality of the 
models only relying on backtestings. Hansen, Lunde, and Nason (2011) 
developed the Model Confidence Set (MCS) procedure to compare the 
performance of a given set of VaR series. The Hansen’s procedure works 
like a more comprehensive evaluation tool so we could perform MCS to 
evaluate the accuracy and effectiveness of several VaR models. 

3. Data and data processing 

3.1. Construction of return series 

We choose the Shanghai SE Composite Index (SH000001) and the 
Shenzhen SE Component Index (SZ399001) in the Chinese stock market 
as the empirical objects in application due to their position of vane of the 
market. We select the daily closing prices from January 5, 2009 to 
December 31, 2015 that includes 1700 trading days to obtain daily 
returns. We also obtain the 1-min intraday price data and thus form the 
HF dataset of 10-min return, 20-min return, 30-min return and 40-min 
return through different sampling frequency. And the size of HF data
set are 1700×24, 1700×12, 1700×8 and 1700×6, respectively. All the 
price data used are closing prices and can be obtained from WIND. 

In this empirical work, we will first reverse the sign of historical 
returns and calculate the VaR for the extreme value along the right tail, 
in order to display the great losses more intuitively. Table 1 shows the 
descriptive statistical results of the historical daily return of SH000001 

and SZ399001 during January 5, 2009 to December 31, 2015, and the 
unit root test shows that they are all first-order stationary, thereby 
ensuring the stability of the return series. 

In section 2.3, we introduce two methods of integrating the infor
mation of intraday returns to form daily returns in details. But it is worth 
noting that the parametric method requires the return series to be in
dependent of each other. Therefore, Pearson’s correlation test is applied 
to check whether the data used in the empirical study meets this 
requirement. Table 2 lists the p-value of the test between two adjacent 
series of intraday return. 

The proportion of sequence pairs that do not meet the independence 
requirement under each frequency is also listed in the last row in 
Table 2. The results tell that there exists some correlation between the 
adjacent series of intraday returns. The dependence of 20 min-HF is 
particularly significant, but that of 30 min-HF is relatively weakest. 
Although it is reasonable to assume that the intraday returns are 
mutually independent according to the efficient market hypothesis, we 
add the seasonal factor to the dynamic equation of the scale parameter, 
which could reduce the correlation between high-frequency series to a 
certain extent. 

As explained in 2.2, following the practice of Harvey and Ito (2013), 
we add the periodic factor to the score-driven equation of the scale 
parameter λ, to eliminate the influence of the periodic structure on the 
return volatility. Since we assume that the tail parameter as well as the 
skewness parameter is consistent with the daily return, λ of intraday 
return will be determined by that of daily return rather than its own DCS 
law. Therefore, the deterministic component in daily return will help to 
indirectly identify the deterministic component in intraday returns. And 
this so-called deterministic component may be the possible factor that 
makes the intraday series be correlated with each other. In other word, 
considering the periodic component as an extra explanatory variable 
that influence the scale parameter, could not only promote the accuracy 
of fitting, but also eliminate the impact of correlation between series of 
high-frequency return to a certain extent, and thus ensure the feasibility 
of the parametric method. 

Table 2 
Results of Pearson’s correlation test for intraday return, SH000001 and SZ399001, 2009–2015.  

Pair of returns SH000001 SZ399001  

10 min-HF 20 min-HF 30 min-HF 40 min-HF 10 min-HF 20 min-HF 30 min-HF 40 min-HF 

1–2 0(***) 0(***) 0.89 0.98 0(***) 0(***) 0.52 0.78 
2–3 0(***) 0(***) 0(***) 0.34 0(***) 0(***) 0.14 0.14 
3–4 0(***) 0(***) 0.27 0(***) 0(***) 0.3 0(***) 0(***) 
4–5 0(***) 0.57 0(***) 0(***) 0(***) 0(***) 0(***) 0(***) 
5–6 0.22 0(***) 0.55 0(***) 0.46 0(***) 0.85 0(***) 
6–7 0.01(**) 0(***) 0(***)  0.04(**) 0(***) 0(***)  
7–8 0.03(**) 0(***) 0(***)  0.32 0.28 0(***)  
8–9 0.58 0(***)   0.02(**) 0.01(**)   
9–10 0.88 0.36   0.54 0.34   
10–11 0(***) 0(***)   0(***) 0(***)   
11–12 0(***) 0(***)   0(***) 0(***)   
12–13 0(***)    0(***)    
13–14 0(***)    0(***)    
14–15 0(***)    0(***)    
15–16 0.85    0.58    
16–17 0.07    0.1    
17–18 0(***)    0(***)    
18–19 0.28    0.14    
19–20 0.35    0.77    
20–21 0.4    0.65    
21–22 0.29    0.78    
22–23 0(***)    0(***)    
23–24 0.01    0    
ratio 60.87% 81.82% 57.14% 60.00% 60.87% 72.73% 57.14% 60.00% 

Note: *, **, and *** represent statistical significance levels of 5%, 1%, and 0.1%, respectively. All the values of the table above indicate the p-values of the Pearson’s 
correlation test, which determines whether reject the null hypothesis that the correlation between two series is equal to 0. 
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3.2. Vacation and weekend effect 

Generally, the “vacation and weekend effect” refers to the phenom
enon that the opening price after the end of a long closed period may be 
remarkably different from the closing price before the start of the closed 
period. This abnormal fluctuation may lead to “fake” extreme returns 
that can hardly represent the actual information of the market. So there 
is a need to adjust returns affected by this kind of effect before con
structing models. The practice of this adjustment is the same as what 
mentioned in Song et al. (2021)’s work. 

3.3. Overnight effect 

The “overnight effect” refers to a phenomenon that due to the 
accumulation of night information, a significantly different change in 
stock returns will occur after the stock market opens the next day than in 
other periods. French and Roll (1986) believed that the continuous 
accumulation of private information during the non-trading period leads 
to cognitive biases of traders and thus active transactions during the 
trading period. Greene and Watts (1996) proved that not only private 
information, but public information will also cause investors to trade 
more actively, resulting in greater volatility in opening moment of the 
market. In our case, we believe that there is no need to eliminate this 
“overnight effect” because it contains the original information of price 
change which should be considered in risk management. 

3.4. Periodic structure 

Daily returns will be more or less affected by the seasons. We assume 
that the period of this impact is 366 days (including the special case of 
leap years). Since the returns in the empirical study are logarithmic, 
considering the missing values on holidays and February 29 in non-leap 
years to be zero is reasonable, which means no price change in those 
days. Based on the historical data, we use moving average method to 
decompose the trend item, and then averages the corresponding values 
at each day in the cycle to obtain the deterministic annual periodic 
structure. It is also feasible to directly average the corresponding returns 
of each unit day to obtain the cycle component, and the result is similar 
to the previous method. Fig. 1 shows the yearly periodic structure of 
SH000001 and SZ399001. 

4. Empirical results 

4.1. In-sample VaR forecasts 

The data in the window from January 5, 2009 to December 31, 2014 
is used to build the model and obtain the in-sample VaR forecasts. The 
in-sample results will imply the validity of daily return integrated by 
intraday return with different frequency. This will also help to identify 
the relatively better choice of HF data in our application. 

For the in-sample VaR generated by the models based on different 
frequencies of HF, we apply several classic backtestings to compare their 
performance at α = {0.90,0.91,0.92,…,0.97,0.98,0.99}. The results of 
SH000001 and SZ399001 are listed in Table 3and Table 4, respectively 
(To keep the list concise, we only give the four cases where α is 0.93, 
0.95, 0.97 and 0.99 in the table, see Appendix B for the complete list). 
For SH000001, taking the statistics and the p-values at different level of 
α into account, it can be judged that the NIG-DCS-VaR based on daily 
return (LF) is basically weaker than HF-based VaR (except 10 min HF- 
based VaR) in coverage ability and independence. MCS rankings also 
prove the superiority of HF-based models. This means that incorporating 
the information of intraday returns into the model can improve the ac
curacy of VaR forecasts to a certain extent, but if the used intraday 
returns are with a very high frequency, the distribution of daily returns 
may be overestimated and hence the VaR forecast could be over
estimated. Furthermore, when α ≤ 0.95, 40 min-based VaR perform 
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relatively better in LRUC test, LRCC test, DQ test, and MCS test than 
other HF-based VaR, followed by 30 min-based VaR; but when α > 0.95, 
30 min-based VaR forecasts perform relatively best. 

For SZ399001, no matter at which level, the 30 min-HF-based VaR 
forecasts perform significantly better than others in terms of two tests for 
coverage ability, but their independence show a disadvantage. However, 
MCS rankings give the comprehensive results of measurement and still 
support 30 min-HF-based model. On the whole, the 30 min-based-NIG- 
DCS model is more stable and can maintain the accuracy of VaR fore
casts at a high risk level. Table 2 also proves that the intraday return at 
30 min intervals has the weakest correlation. Therefore, we believe that 
30 min-intraday returns can be considered as the relatively best 
modeling object. We will construct NIG-DCS model based on 30 min- 
intraday returns to obtain out-of-sample forecasts and compare them 
with those from other benchmark models. 

Fig. 2 compares the in-sample VaR estimates between the daily- 
return-based and 30 min-HF-based. As shown in the figure, 30 min- 
based model has an obvious smaller overall forecast error, and its 
coverage ability is much more in line with expectations, making it 
perform well in the LRCC and LRUC tests. We originally thought that the 
daily VaR estimated by integrating intraday information will be more 

sensitive to risks and should reflect greater fluctuation, but the results 
indicates that the addition of high-frequency information reduces the 
volatility of VaR in the face of extreme returns, which is out of our 
expectation. Compared with the results based on LF, HF-based NIG-DCS- 
VaR behave more smoothly. 

An effective DCS model requires that the score series of involved 
time-varying parameters should not have autocorrelation. Lagrange 
multiplier (LM) test proposed by Harvey and Thiele (2016) are usually 
used to check the autocorrelation of time series and we also apply it to 
check the effectiveness of NIG-DCS models we construct. The p-values of 
the LM test for the in-sample scores are listed in Appendix B, including 
both daily-return-based results and 30 min-return-based results. All the 
p-values are greater than 0.05, indicating that there is no significant 
autocorrelation in the in-sample scores of different parameters that are 
under different DCS models. Fig. 3 briefly shows the correlograms of 
scores for the four parameters estimated based on the daily return, as 
well as the correlograms of scores for two DCS-driven parameters of the 
first 30 min returns and the last 30 min returns. 

Table 3 
Back testing results of in-sample daily VaR estimates, SH000001.  

Model Alpha LRUC 
statistics 

LRCC 
statistics 

DQ statistics MCS rank (α = 0.15) Alpha LRUC 
statistics 

LRCC 
statistics 

DQ statistics MCS rank 
(α = 0.15) 

VaR-day 0.93 2.82 (0.09) 4.2 (0.12) 5.55 (0.59) 4 0.97 1.17 (0.28) 1.41 (0.49) 2.44 (0.93) 5 
VaR- 

40minhq  
0.48 (0.49) 2.79 (0.25) 5.9 (0.55) 1  0.5 (0.48) 0.83 (0.66) 1.88 (0.97) 2 

VaR- 
30minhq  

2.03 (0.15) 3.62 (0.16) 4.8 (0.68) 2  0.5 (0.48) 0.83 (0.66) 1.88 (0.97) 1 

VaR- 
20minhq  

3.76 (0.05) 4.94 (0.08) 5.6 (0.59) 3  0.12 (0.73) 0.56 (0.76) 4.06 (0.77) 3 

VaR- 
10minhq  

0.48 (0.49) 1.21 (0.55) 11.71 (0.11) 5  0.43 (0.51) 1.12 (0.57) 5.73 (0.57) 4      

(0.66)     (0.56) 
VaR-day 0.95 1.23 (0.27) 2.07 (0.35) 4.14 (0.76) 4 0.99 0.3 (0.58) 0.41 (0.81) 0.69 (1) 4 
VaR- 

40minhq  
0.29 (0.59) 1.48 (0.48) 3.3 (0.86) 1  0.3 (0.58) 0.41 (0.81) 0.64 (1) 2 

VaR- 
30minhq  

0.68 (0.41) 1.68 (0.43) 3.21 (0.87) 2  0.3 (0.58) 0.41 (0.81) 0.64 (1) 1 

VaR- 
20minhq  

1.23 (0.27) 2.07 (0.35) 3.72 (0.81) 3  0.32 (0.58) 0.41 (0.81) 0.64 (1) 3 

VaR- 
10minhq  

0.07 (0.79) 2.13 (0.34) 15.86 
(0.03*) 

5  1.12 (0.29) 1.29 (0.52) 3.7 (0.81) 5      

(0.33)     (0.35) 

Note: *, **, and *** represent statistical significance levels of 5%, 1%, and 0.1%, respectively. The rank tells the superiority of these four models under a default level of 
α and p-value helps to prove the non-rejection of this superiority. The p-value of the relevant test is indicated by the value in parentheses. Bold text indicates rejections 
at the * probability level. 

Table 4 
Back testing results of in-sample daily VaR estimates, SZ399001.  

Model Alpha LRUC statistics LRCC statistics DQ statistics MCS rank 
(α = 0.15) 

Alpha LRUC statistics LRCC statistics DQ statistics MCS rank 
(α = 0.15) 

VaR-day 0.93 5.25 (0.02*) 5.34 (0.07) 5.98 (0.54) 3 0.97 6.09 (0.01*) 6.09 (0.05) 2.97 (0.89) 4 
VaR-40minhq  8.49 (0.01**) 8.51 (0.01*) 5.97 (0.54) 4  1.84 (0.17) 1.86 (0.39) 3.6 (0.82) 3 
VaR-30minhq  0 (1) 0.48 (0.79) 15.18 (0.03*) 1  1.15 (0.28) 2.66 (0.26) 11.85 (0.1) 1 
VaR-20minhq  14.51 (0.01**) 14.51 (0.01**) 7.23 (0.41) 5  6.09 (0.01*) 6.09 (0.05) 2.97 (0.89) 5 
VaR-10minhq  3.09 (0.08) 3.27 (0.19) 14.93 (0.04*) 2  0 (1) 0.19 (0.91) 25.58 (<0.01**) 2      

(0.55)     (0.38) 
VaR-day 0.95 10.26 (0.01**) 10.26 (0.01*) 5.05 (0.65) 4 0.99 2.01 (0.16) 2.01 (0.37) 0.97 (1) 4 
VaR-40minhq  4.95 (0.03*) 4.97 (0.08) 4.33 (0.74) 3  2.01 (0.16) 2.01 (0.37) 0.97 (1) 3 
VaR-30minhq  0 (1) 1.51 (0.47) 20.37 (<0.01**) 1  0 (1) 0.02 (0.99) 12.81 (0.06) 1 
VaR-20minhq  10.26 (0.01**) 10.26 (0.01*) 5.05 (0.65) 5  2.01 (0.16) 2.01 (0.37) 0.97 (1) 5 
VaR-10minhq  0.98 (0.32) 1.16 (0.56) 17.26 (0.02*) 2  0.78 (0.38) 0.87 (0.65) 49.64 (<0.01**) 2      

(0.44)     (0.45) 

Note: *, **, and *** represent statistical significance levels of 5%, 1%, and 0.1%, respectively. The rank tells the superiority of these four models under a default level of 
α and p-value helps to prove the non-rejection of this superiority. The p-value of the relevant test is indicated by the value in parentheses. Bold text indicates that it fails 
the test. 
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Fig. 2. Comparison between HF-based NIG-DCS-VaR and LF-based NIG-DCS-VaR, SH000001 & SZ399001.  
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Fig. 3. Correlograms of in-sample scores for fitted daily return and 1st 30 min’s return, SH000001&SZ399001. The first two rows represent score correlograms of the four parameters of daily return, and the bottom 
represents the score correlograms of the two parameters of the first 30 min’s return. 
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4.2. Out-of-sample VaR Forecasts 

From May to August in 2015, China’s stock market experienced a 
“disaster” since two rounds of cliff-shaped declines occurred during a 
very short period. We believe that make the out-of-sample VaR forecasts 
in this time window has great empirical significance. We expect to uti
lize the NIG-DCS model based on the intraday data with 30 min-fre
quency, to apply a rolling-window scheme to obtain a time series of VaR 
forecasts at different confidence levels, i.e. α =

{0.90,0.91,0.92,0.93,0.94,0.95,0.96,0.97,0.98,0.99}. Let n denote the 
length of VaR to be predicted, m denote the size of the available sample 
and s denote the length of the rolling window. Then we have the 

sequence of forecasts {VaRt
α, t = s + 1, s + 2…, s + n}, where each pre

diction is obtained considering the observations that incorporate the 
intraday return, {Rτ, t− s}τ=1

8 , {Rτ, t− s+1}τ=1
8 …, {Rτ, t− 1}τ=1

8 . We produce n 
= 244 daily VaR forecasts for January 5 to December 31 in 2015 by 
considering the size of the window to be s = 1456, and the initial one 
starts from January 5, 2009 and ends with December 31, 2014. Fig. 4 
presents the out-of-sample distribution of daily return for SH000001, 
which is fitted by the 30 min- based NIG-DCS model. It can be seen from 
the figure that the distribution has obvious sharp peaks and heavy tails. 
The out-of-sample daily VaR forecasts in our study are essentially the 
quantiles on the right tail of the fitted distribution. 

Hansen, Huang, and Shek (2012) proved that GARCH model 
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Fig. 4. The fitted out-of-sample distribution of daily return,SH00001.  

Table 5 
Back testing results of out-of-sample daily VaR forecasts, SH000001.   

Alpha LRUC 
statistics 

LRCC 
statistics 

DQ statistics MCS 
(α =
0.15) 

Alpha LRUC 
statistics 

LRCC 
statistics 

DQ statistics MCS(α =
0.15) 

NIG-DCS 0.93 0.28 (0.59) 3.85 (0.15) 13.88 (0.05) 1 0.97 0.37 (0.54) 4.9 (0.09) 14.97 
(0.04*) 

2 

RGARCH-SSTD-RV 1.41 (0.24) 3.4 (0.18) 17.95 
(0.01*) 

5 4.99 (0.03*) 5.04 (0.08) 22.86 (0**) 4 

RGARCH-GED-RV 1.41 (0.24) 3.4 (0.18) 17.99 
(0.01*) 

6 4.99 (0.03*) 5.04 (0.08) 22.89 (0**) 3 

RGARCH-NIG-RV 1.41 (0.24) 3.4 (0.18) 17.94 (0.01*) 4 3.71 (0.05) 3.84 (0.15) 22.1 (0**) 5 
RGARCH-SSTD- 

RRV 
1.41 (0.24) 3.4 (0.18) 12.61 (0.08) 2 3.71 (0.05) 3.84 (0.15) 12.97 (0.07) 1 

RGARCH-GED- 
RRV 

1.41 (0.24) 3.4 (0.18) 12.21 (0.09) 7 4.99 (0.03*) 6.46 (0.04*) 18.35 
(0.01*) 

7 

RGARCH-NIG-RRV 0.91 (0.34) 3.4 (0.18) 14.49 (0.04) 3 3.71 (0.05) 3.84 (0.15) 12.97 (0.07) 6      
0.34     0.36 

NIG-DCS 0.95 0.13 (0.72) 3.15 (0.21) 16.19 
(0.02*) 

1 0.99 3.73 (0.05) 6.11 (0.05) 25.91 (0**) 5 

RGARCH-SSTD-RV 3.44 (0.06) 4.9 (0.09) 21.07 (0**) 3 2.08 (0.15) 2.29 (0.32) 20.26 
(0.01*) 

4 

RGARCH-GED-RV 3.44 (0.06) 4.9 (0.09) 21.12 (0**) 5 3.73 (0.05) 6.11 (0.05) 41.11 (0***) 6 
RGARCH-NIG-RV 3.44 (0.06) 4.9 (0.09) 21.07 (0**) 4 2.08 (0.15) 2.29 (0.32) 20.26 

(0.01*) 
2 

RGARCH-SSTD- 
RRV 

5.55 (0.02*) 8.04 (0.02*) 25.41 (0**) 2 0.84 (0.36) 0.98 (0.61) 1.73 (0.97) 1 

RGARCH-GED- 
RRV 

5.55 (0.02*) 8.04 (0.02*) 24.27 (0**) 7 8.01 (0**) 9.35 (0.01*) 40.83 (0***) 7 

RGARCH-NIG-RRV 5.55 (0.02*) 8.04 (0.02*) 25.43 (0**) 6 2.08 (0.15) 2.29 (0.32) 28.49 (0**) 3      
0.38     0.35 

Note: *, **, and *** represent statistical significance levels of 5%, 1%, and 0.1%, respectively. The rank tells the superiority of these four models under a default level of 
α and p-value helps to prove the non-rejection of this superiority. The p-value of the relevant test is indicated by the value in parentheses. Bold text indicates rejections 
at the * probability level. 
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integrated with realized measures of volatility can improve the empir
ical fitting efficiency compared to standard GARCH models based on 
daily returns only. Such models can be called RGARCH models and can 
extend to RGARCH-SSTD (skew-student distribution), RGARCH-GED 
(generalized error distribution), RGARCH-RV (realized volatility) and 
RGARCH-RRV (realized range-based volatility) according to different 
settings of volatility. We consider the above four RGARCH framework as 
the benchmarks and we will compare the performance of out-of-sample 
daily VaR forecasts that produced by 30 min-NIG-DCS model and 
benchmark models, for SH00001 and SZZ399001 respectively. 

Similarly, we only list part of results in Table 5 and Table 6, and the 
complete content of backtesting and MCS are in Appendix B. Table 5 
implies that, when α = 0.99, the performance of NIG-DCS-VaR are 
slightly inferior to other RGARCH-VaR. But at other levels, the NIG-DCS 
model based on 30 min-HF data is better than other RGARCH models in 
terms of VaR coverage and independence，and it always ranks among 
the top three in the MCS test. Especially when α =

{0.93,0.94,0.95,0.96}, our model beats other RGARCH models and stays 
in the first place. In addition, the results reveal that when the distribu
tion is not specified as GED, the RGARCH models with RRV as the 
realized measure outdo those RV-based. In RGARCH models, RGARCH- 
SSTD-RRV is considered as the best benchmarks and it outperforms our 
model when the risk level is very high. 

Table 6 lists the test results of SZ399001. Compared with RGARCH, 
the NIG-DCS-VaR based on the empirical data of SZ3990001 show a 
more obvious advantage. Especially when the risk level increases, such 
as α > 0.93, 30 min-NIG-DCS model always ranks first in MCS test, and it 
can pass the LRUC, LRCC, and DQ tests with absolute advantage. 
Different from SH000001, RGARCH-GED-RV has the best performance 
among RGARCH models, followed by RGARCH-NIG-RV. And the results 
implies that the models using RV as the realized volatility is better than 
those RRV-based. 

When α = {0.94,0.95,0.96}, the out-of-sample NIG-DCS-VaR fore
casts of SH000001 and SZ399001 have outstanding performance in 
contrast with RGARCH-VaR forecasts. Therefore, under these three risk 
levels, the VaR sequences generated by our model and benchmark 
models are visually compared in Fig. 5. As is shown, when there is a 
cluster of extreme returns, for example, in mid-June and late August, 
NIG-DCS-VaR can sensitively capture the fluctuation of returns and 
cover the real return more accurately due to its unique DCS mechanism. 
The scores of the out-of-sample DCS models also passed the LM test. It is 
believed that there is no significant serial autocorrelation in the scores 
generated by NIG-DCS models based on the 30 min returns. See for more 
details of the diagnosis from Appendix B. 

It is revealed from out-of-sample results that the novel model pro
posed in this study could indeed improve the VaR measurement to a 
certain extent. The evidence to support it is that when α is in the range of 
0.9–0.99, the NIG-DCS model based on HF data can provide more ac
curate VaR forecasts at most risk levels in contrast with the realized 
GARCH models. Hence, the NIG-DCS-VaR model built on a certain fre
quency of intraday returns makes a reliable contribution to financial risk 
management. And it may reduce the possibility of underestimating or 
overestimating the risk in financial supervision. 

In addition to evaluating the efficiency of the out-of-sample VaR 
predicted by NIG-DCS, we are also interested in how the parameters in 
the model, specifically, the parameters of the estimated daily return 
distribution incorporating intraday information, affect the VaR. Ac
cording to the parametric method introduced in section 2.3, VaR fore
casting is based on the estimated NIG distribution of daily return, which 
requires the estimated skewness and tail parameters of the daily return’s 
NIG and all the estimated location and scale parameters of the corre
sponding intraday returns’ NIG. To concisely illustrate how VaR de
pends on these parameters, we conduct our analysis on the basis of the 
parameter estimates of one randomly selected day from the prediction 
window. Taking the out-of-sample parameter estimates in the NIG dis
tribution of daily return of SH000001 on January 5, 2015 as an example, 
we display the variation of its VaR forecast by 30 min-NIG-DCS model 
when one of these four parameters varies within an interval containing 
its original estimate, while keeping the other three parameters fixed as 
their original estimates. The estimated results tell that daily return on 
this day, Re, may obey a NIG distribution with parameters (μe = 0.00295, 
δe = 0.018, αe = 81.2, βe = − 13.8), i.e., Re~NIG 
(0.00295,0.018,81.2, − 13.8). Define a symmetrical interval centered on 
the actual estimate as the variation range of each parameter and satisfy 
that δ > 0,0 < |β| < αe, 0 < |βe| < α. Then let μ ∈ [− 0.0021,0.0080],δ ∈
[0.0017,0.0337],α ∈ [21.2454,141.2454], β ∈ [− 73.79077,46.20923]. 
Fig. 6 displays the fluctuation of VaR with the change of a certain 
parameter. To show a general variation law, the confidence level of VaR 
is set to 95%, 97% and 99%. As subgraph (a) suggests, VaR forecast has a 
positive linear relationship with the location parameter when the other 
three parameters are controlled. Curves in subgraph (b) and subgraph 
(d) both present positive nonlinear relationships, but in the former, as 
the parameter value increases, the growth rate of VaR slows down, while 
in the latter, VaR increases at an accelerated rate. Subgraph (c) tells that 
with the increase of the parameter value, VaR will gradually decay. 
Fig. 6 indicates that the larger the summation of location as well as scale 
parameters of intraday returns, the larger the NIG-DCS-VaR. Tail and 
skewness parameters both determine the shape of the estimated 

Table 6 
Back testing results of out-of-sample daily VaR forecasts, SZ399001.   

Alpha LRuc statistics LRcc statistics DQ statistics MCS 
(α = 0.15) 

Alpha LRuc statistics LRcc statistics DQ statistics MCS 
(α = 0.15) 

NIG-DCS 0.93 0.22 (0.64) 1.69 (0.43) 12.54 (0.08) 2 0.97 0.37 (0.54) 1.34 (0.51) 5.5 (0.6) 1 
RGARCH-SSTD-RV  0.91 (0.34) 1.71 (0.43) 8.4 (0.3) 4  3.71 (0.05) 3.84 (0.15) 38.36 (0**) 4 
RGARCH-GED-RV  0.91 (0.34) 1.71 (0.43) 8.52 (0.29) 1  3.71 (0.05) 3.84 (0.15) 38.68 (0**) 2 
RGARCH-NIG-RV  0.91 (0.34) 1.71 (0.43) 8.43 (0.3) 3  3.71 (0.05) 3.84 (0.15) 38.41 (0**) 3 
RGARCH-SSTD-RRV  1.41 (0.24) 3.4 (0.18) 10.9 (0.14) 5  4.99 (0.03*) 6.46 (0.04) 38.84 (0**) 5 
RGARCH-GED-RRV  2 (0.16) 3.57 (0.17) 11.41 (0.12) 7  4.99 (0.03*) 6.46 (0.04) 38.89 (0**) 7 
RGARCH-NIG-RRV  1.41 (0.24) 3.4 (0.18) 10.9 (0.14) 6  4.99 (0.03*) 6.46 (0.04) 38.82 (0**) 6      

0.37     0.37 
NIG-DCS 0.95 0.63 (0.43) 0.64 (0.73) 6.39 (0.5) 1 0.99 2.08 (0.15) 2.29 (0.32) 12.53 (0.08) 1 
RGARCH-SSTD-RV  2.55 (0.11) 2.89 (0.24) 14.87 (0.04*) 4  3.73 (0.05) 4.03 (0.13) 25.71 (0**) 4 
RGARCH-GED-RV  2.55 (0.11) 2.89 (0.24) 14.99 (0.04*) 2  5.72 (0.02*) 6.14 (0.05) 35.24 (0**) 2 
RGARCH-NIG-RV  2.55 (0.11) 2.89 (0.24) 14.89 (0.04*) 3  3.73 (0.05) 4.03 (0.13) 25.87 (0**) 3 
RGARCH-SSTD-RRV  2.55 (0.11) 2.89 (0.24) 13.44 (0.06) 5  13.33 (0**) 14 (0**) 65.95 (0***) 5 
RGARCH-GED-RRV  2.55 (0.11) 2.89 (0.24) 13.48 (0.06) 7  16.32 (0**) 16.76 (0**) 81.23 (0***) 7 
RGARCH-NIG-RRV  2.55 (0.11) 2.89 (0.24) 13.44 (0.06) 6  13.33 (0**) 14 (0**) 65.99 (0***) 6      

0.38     0.38 

Note: *, **, and *** represent statistical significance levels of 5%, 1%, and 0.1%, respectively. The rank tells the superiority of these four models under a default level of 
α and p-value helps to prove the non-rejection of this superiority. The p-value of the relevant test is indicated by the value in parentheses. Bold text indicates rejections 
at the * probability level. 
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Fig. 5. Comparison of out-of-sample VaR forecasts between 30 min-NIG-DCS based and RGARCH based. The data is from January 5 to December 31 in 2015. The black line represents the real return, and blue line 
represents the out-of-sample VaR forecasts produced by RGARCH models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Fluctuation of NIG-DCS-VaR with varying parameter values in NIG. The black points mark the actual VaR forecasts of SH000001 at different confidence levels on January 5, 2015.  
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distribution. When location and scale parameters are under control, 
larger skewness or smaller tail brings about a larger VaR, which reveals 
that smaller tail index results in a heavier tail of the distribution. 

5. Conclusion 

Encouraged by the literary fact that high-frequency data such as 
intraday returns contribute to financial risk management, we propose 
the NIG-DCS-VaR model in order to improve daily VaR evaluation by 
explicitly incorporating intraday returns. In relative research field, in 
order to make use of high-frequency data, realized volatility is 
commonly constructed based on intraday returns to well capture the 
noise of the market. Nevertheless, the realized-volatility-based approach 
often fails to fit the distribution of daily returns appropriately because 
the assumptions about the dynamic realized volatility and the form of 
distribution may not be consistent with the reality. Motivated by this 
situation, the NIG-DCS-VaR is developed to generate a forecast of daily 
return directly using intraday return. We introduce a parametric method 
and a non-parametric bootstrap method for combining the information 
that intraday returns offer. The parametric method takes advantage of 
the semi-additivity of the NIG distribution, and can be extended to 
various assets due to its strong tractability. We conducted an empirical 
analysis using two main indexes of the Chinese stock market, and a 
variety of backtesting approaches as well as the model confidence set 
approach prove that VaR forecasting performance of NIG-DCS is 
generally better than that of realized GARCH models. Especially when 
the risk level is relatively high, NIG-DCS-VaR beats RGARCH-VaR in 
terms of coverage ability and independence. Additionally, we also 
perform a simple analysis to explore how NIG-DCS-VaR depends on the 
parameters in the estimated daily return distribution. 

To sum up, our study contributes to enriching the theoretical un
derstanding of VaR in several ways. First, it further emphasizes the 
effectiveness of intraday information in predicting daily VaR. Accurately 

estimating the distribution of intraday return is likely to be another key 
point for improving risk management, besides capturing intraday vola
tility. Second, NIG-DCS-VaR provides a basic dynamic frame that can be 
extended to other appropriate distributions specified for return. Third, 
the backtesting and MCS results demonstrate that NIG-DCS-VaR model 
can improve coverage ability, reduce the forecast error, and enhance 
statistical reliability in market risk management. In addition, we also 
found that although NIG distribution provides a convenient way of 
estimating daily return incorporating intraday returns due to its special 
property, it is not as effective as some special distributions, such as the 
Pareto distribution, in fitting returns with an extremely heavy tail. We 
intend to explore more possible optimization models under this frame
work, e.g., considering the combination of Weibull-Pareto distribution 
with DCS mechanism in our future work, to further promote the risk 
management capability of the VaR model. We will also pay attention to 
the applicability of NIG’s “close” form under summation when the 
intraday returns are not independent. 
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Appendix A 

Proof A.1. NIG distribution is not a stable distribution  

(1) Assuming that the NIG variable X1, X2, ⋯Xn are also independent and stable distributed, then 

X1 +⋯+Xn ⇒dn1/θX + dn# (A.1.1) 

In light of the closure under convolution property, when n ≥ 2, then 

α =
(
n1/θ)− 1α# (A.1.2)  

β =
(
n1/θ)− 1β# (A.1.3) 

This indicates that θ → ∞, which contradicts with the condition θ ∈ (0,2] that needs to be satisfied in stable distribution. Hence, the NIG dis
tribution does not have a characteristic factor that the stable distribution has.  

(2) The p(0 < p < θ,0 < θ < 2)th moments of stable distribution generally do not exist, except for some special cases of stable distributions such as 
Gaussian with θ = 2. However, NIG’s moments especially its first and second order moments indeed exist. 

Proof completed. 

Appendix B  

Table B1 
Back testing results of in-sample daily VaR estimates, SH000001.  

Model Alpha LRuc statistics LRcc statistics DQ statistics MCS rank 
(α = 0.15) 

Alpha LRuc statistics LRcc statistics DQ statistics MCS rank(α = 0.15) 

VaR-day 0.9 6.14 (0.01*) 8.44 (0.01*) 8.38 (0.3) 5 0.95 1.23 (0.27) 2.07 (0.35) 4.14 (0.76) 4 
VaR- 

40minhq  
3.32 (0.07) 6.49 (0.04) 8.52 (0.29) 2  0.29 (0.59) 1.48 (0.48) 3.3 (0.86) 1 

(continued on next page) 
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Table B1 (continued ) 

Model Alpha LRuc statistics LRcc statistics DQ statistics MCS rank 
(α = 0.15) 

Alpha LRuc statistics LRcc statistics DQ statistics MCS rank(α = 0.15) 

VaR- 
30minhq  

5.09 (0.02*) 7.67 (0.02) 8.41 (0.3) 3  0.68 (0.41) 1.68 (0.43) 3.21 (0.87) 2 

VaR- 
20minhq  

3.32 (0.07) 3.51 (0.17) 7.17 (0.41) 1  1.23 (0.27) 2.07 (0.35) 3.72 (0.81) 3 

VaR- 
10minhq  

1.42 (0.23) 3.54 (0.17) 16.58 (0.02*) 4  0.07 (0.79) 2.13 (0.34) 15.86 (0.03*) 5      

(0.54)     (0.33) 
VaR-day 0.91 5.69 (0.02*) 7.5 (0.02*) 8.31 (0.31) 5 0.96 0.85 (0.36) 1.41 (0.49) 4.33 (0.74) 4 
VaR- 

40minhq  
2.17 (0.14) 5.04 (0.08) 6.16 (0.52) 1  0.09 (0.77) 0.93 (0.63) 3.15 (0.87) 2 

VaR- 
30minhq  

4.63 (0.03*) 6.68 (0.04) 7.51 (0.38) 3  0.09 (0.77) 0.93 (0.63) 2.87 (0.9) 1 

VaR- 
20minhq  

4.63 (0.03*) 6.68 (0.04) 6.44 (0.49) 2  0.85 (0.36) 1.41 (0.49) 3.91 (0.79) 3 

VaR- 
10minhq  

0.68 (0.41) 1.54 (0.46) 12.94 (0.07) 4  0.08 (0.77) 2.62 (0.27) 11.87 (0.1) 5      

(0.28)     (0.45) 
VaR-day 0.92 3.25 (0.07) 5.06 (0.08) 6.46 (0.49) 5 0.97 1.17 (0.28) 1.41 (0.49) 2.44 (0.93) 5 
VaR- 

40minhq  
1.77 (0.18) 4.08 (0.13) 6.63 (0.47) 1  0.5 (0.48) 0.83 (0.66) 1.88 (0.97) 2 

VaR- 
30minhq  

3.25 (0.07) 5.06 (0.08) 6.11 (0.53) 2  0.5 (0.48) 0.83 (0.66) 1.88 (0.97) 1 

VaR- 
20minhq  

4.19 (0.04) 5.78 (0.06) 6.27 (0.51) 3  0.12 (0.73) 0.56 (0.76) 4.06 (0.77) 3 

VaR- 
10minhq  

0.19 (0.67) 1.32 (0.52) 12.99 (0.07) 4  0.43 (0.51) 1.12 (0.57) 5.73 (0.57) 4      

(0.42)     (0.56) 
VaR-day 0.93 2.82 (0.09) 4.2 (0.12) 5.55 (0.59) 4 0.98 0.77 (0.38) 0.88 (0.64) 1.83 (0.97) 5 
VaR- 

40minhq  
0.48 (0.49) 2.79 (0.25) 5.9 (0.55) 1  0.18 (0.67) 0.35 (0.84) 1.32 (0.99) 2 

VaR- 
30minhq  

2.03 (0.15) 3.62 (0.16) 4.8 (0.68) 2  0.18 (0.67) 0.35 (0.84) 1.32 (0.99) 1 

VaR- 
20minhq  

3.76 (0.05) 4.94 (0.08) 5.6 (0.59) 3  0 (1) 0.25 (0.88) 7.69 (0.36) 3 

VaR- 
10minhq  

0.48 (0.49) 1.21 (0.55) 11.71 (0.11) 5  0 (1) 0.25 (0.88) 1.71 (0.97) 4      

(0.66)     (0.42) 
VaR-day 0.94 2.4 (0.12) 3.4 (0.18) 5 (0.66) 4 0.99 0.3 (0.58) 0.41 (0.81) 0.69 (1) 4 
VaR- 

40minhq  
0.25 (0.62) 2.06 (0.36) 4.33 (0.74) 1  0.3 (0.58) 0.41 (0.81) 0.64 (1) 2 

VaR- 
30minhq  

1.63 (0.2) 2.81 (0.25) 4.04 (0.78) 2  0.3 (0.58) 0.41 (0.81) 0.64 (1) 1 

VaR- 
20minhq  

2.4 (0.12) 3.4 (0.18) 4.49 (0.72) 3  0.32 (0.58) 0.41 (0.81) 0.64 (1) 3 

VaR- 
10minhq  

0.25 (0.62) 1.53 (0.46) 14.73 (0.04*) 5  1.12 (0.29) 1.29 (0.52) 3.7 (0.81) 5      

(0.72)     (0.35) 

Note: *, **, and *** represent statistical significance levels of 5%, 1%, and 0.1%, respectively. The rank tells the superiority of these four models under a default level of 
α and p-value helps to prove the non-rejection of this superiority. The p-value of the relevant test is indicated by the value in parentheses. Bold text indicates rejections 
at the * probability level.  

Table B2 
Back testing results of in-sample daily VaR estimates, SZ399001.  

Model Alpha LRuc statistics LRcc statistics DQ statistics MCS rank 
(α = 0.15) 

Alpha LRuc statistics LRcc statistics DQ statistics MCS rank 
(α = 0.15) 

VaR-day 0.9 3.34 (0.07) 3.87 (0.14) 8.71 (0.27) 2 0.95 10.26 (0**) 10.26 (0.01*) 5.05 (0.65) 4 
VaR-40minhq  10.25 (0**) 10.34 (0.01*) 7.09 (0.42) 4  4.95 (0.03*) 4.97 (0.08) 4.33 (0.74) 3 
VaR-30minhq  0.11 (0.74) 0.66 (0.72) 20.33 (0**) 1  0 (1) 1.51 (0.47) 20.37 (0**) 1 
VaR-20minhq  14.27 (0**) 14.29 (0**) 8.76 (0.27) 5  10.26 (0**) 10.26 (0.01*) 5.05 (0.65) 5 
VaR-10minhq  7.31 (0.01*) 7.49 (0.02*) 14.92 (0.04*) 3  0.98 (0.32) 1.16 (0.56) 17.26 (0.02*) 2      

(0.29)     (0.44) 
VaR-day 0.91 3.78 (0.05) 4.12 (0.13) 8.49 (0.29) 2 0.96 8.16 (0**) 8.16 (0.02*) 4 (0.78) 4 
VaR-40minhq  12.29 (0**) 12.31 (0**) 7.94 (0.34) 4  3.32 (0.07) 3.34 (0.19) 3.77 (0.81) 3 
VaR-30minhq  0.13 (0.72) 0.33 (0.85) 22.11 (0**) 1  0.24 (0.62) 1.75 (0.42) 14.47 (0.05) 1 
VaR-20minhq  18.86 (0**) 18.86 (0**) 9.49 (0.22) 5  8.16 (0**) 8.16 (0.02*) 4 (0.78) 5 
VaR-10minhq  5.8 (0.02*) 5.98 (0.05) 14.65 (0.04*) 3  0.28 (0.59) 0.47 (0.79) 20.12 (0.01*) 2      

(0.34)     (0.49) 
VaR-day 0.92 4.38 (0.04*) 4.57 (0.1) 7.29 (0.4) 2 0.97 6.09 (0.01*) 6.09 (0.05) 2.97 (0.89) 4 
VaR-40minhq  10.36 (0**) 10.38 (0.01*) 6.93 (0.44) 4  1.84 (0.17) 1.86 (0.39) 3.6 (0.82) 3 
VaR-30minhq  0 (1) 0.2 (0.9) 24.1 (0**) 1  1.15 (0.28) 2.66 (0.26) 11.85 (0.1) 1 
VaR-20minhq  16.68 (0**) 16.68 (0**) 8.35 (0.3) 5  6.09 (0.01*) 6.09 (0.05) 2.97 (0.89) 5 

(continued on next page) 
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Table B2 (continued ) 

Model Alpha LRuc statistics LRcc statistics DQ statistics MCS rank 
(α = 0.15) 

Alpha LRuc statistics LRcc statistics DQ statistics MCS rank 
(α = 0.15) 

VaR-10minhq  4.38 (0.04*) 4.57 (0.1) 14.63 (0.04*) 3  0 (1) 0.19 (0.91) 25.58 (0**) 2      
(0.35)     (0.38) 

VaR-day 0.93 5.25 (0.02*) 5.34 (0.07) 5.98 (0.54) 3 0.98 4.04 (0.04*) 4.04 (0.13) 1.96 (0.96) 4 
VaR-40minhq  8.49 (0**) 8.51 (0.01*) 5.97 (0.54) 4  4.04 (0.04*) 4.04 (0.13) 1.96 (0.96) 3 
VaR-30minhq  0 (1) 0.48 (0.79) 15.18 (0.03*) 1  0.44 (0.51) 4.07 (0.13) 10.74 (0.14) 1 
VaR-20minhq  14.51 (0**) 14.51 (0**) 7.23 (0.41) 5  4.04 (0.04*) 4.04 (0.13) 1.96 (0.96) 5 
VaR-10minhq  3.09 (0.08) 3.27 (0.19) 14.93 (0.04*) 2  0 (1) 0.08 (0.96) 25.53 (0**) 2      

(0.55)     (0.42) 
VaR-day 0.94 3.77 (0.05) 3.86 (0.15) 5.36 (0.62) 3 0.99 2.01 (0.16) 2.01 (0.37) 0.97 (1) 4 
VaR-40minhq  6.68 (0.01) 6.7 (0.04*) 5.09 (0.65) 4  2.01 (0.16) 2.01 (0.37) 0.97 (1) 3 
VaR-30minhq  0 (1) 0.9 (0.64) 16.53 (0.02*) 1  0 (1) 0.02 (0.99) 12.81 (0.06) 1 
VaR-20minhq  12.38 (0**) 12.38 (0**) 6.13 (0.52) 5  2.01 (0.16) 2.01 (0.37) 0.97 (1) 5 
VaR-10minhq  1.94 (0.16) 2.12 (0.35) 15.72 (0.03*) 2  0.78 (0.38) 0.87 (0.65) 49.64 (0**) 2      

(0.52)     (0.45) 

Note: *, **, and *** represent statistical significance levels of 5%, 1%, and 0.1%, respectively. The rank tells the superiority of these four models under a default level of 
α and p-value helps to prove the non-rejection of this superiority. The p-value of the relevant test is indicated by the value in parentheses. Bold text indicates rejections 
at the * probability level.  

Table B3 
Back testing results of out-of-sample daily VaR forecasts, SH000001.   

Alpha LRuc statistics LRcc statistics DQ statistics MCS 
(α = 0.15) 

Alpha LRuc statistics LRcc statistics DQ statistics MCS 
(α = 0.15) 

NIG-DCS 0.9 0.55 (0.46) 3.04 (0.22) 12.81 (0.08) 3 0.95 0.13 (0.72) 3.15 (0.21) 16.19 (0.02*) 1 
RGARCH-SSTD-RV 0.3 (0.58) 1.77 (0.41) 8.15 (0.32) 5 3.44 (0.06) 4.9 (0.09) 21.07 (0**) 3 
RGARCH-GED-RV 0.3 (0.58) 1.77 (0.41) 8.16 (0.32) 6 3.44 (0.06) 4.9 (0.09) 21.12 (0**) 5 
RGARCH-NIG-RV 0.3 (0.58) 1.77 (0.41) 8.15 (0.32) 4 3.44 (0.06) 4.9 (0.09) 21.07 (0**) 4 
RGARCH-SSTD-RRV 0.57 (0.45) 1.68 (0.43) 12.62 (0.08) 2 5.55 (0.02*) 8.04 (0.02*) 25.41 (0**) 2 
RGARCH-GED-RRV 0.57 (0.45) 1.68 (0.43) 11.74 (0.11) 7 5.55 (0.02*) 8.04 (0.02*) 24.27 (0**) 7 
RGARCH-NIG-RRV 0.57 (0.45) 1.68 (0.43) 12.64 (0.08) 1 5.55 (0.02*) 8.04 (0.02*) 25.43 (0**) 6      

0.39     0.38 
NIG-DCS 0.91 0.83 (0.36) 2.72 (0.26) 13.33 (0.06) 2 0.96 0.01 (0.94) 3.72 (0.16) 12.58 (0.06) 1 
RGARCH-SSTD-RV 0.44 (0.5) 2.81 (0.25) 12.52 (0.08) 5 4.61 (0.03*) 4.65 (0.1) 24.81 (0**) 4 
RGARCH-GED-RV 0.44 (0.5) 2.81 (0.25) 12.52 (0.08) 6 4.61 (0.03*) 4.65 (0.1) 24.89 (0**) 3 
RGARCH-NIG-RV 0.44 (0.5) 2.81 (0.25) 12.51 (0.08) 4 4.61 (0.03*) 4.65 (0.1) 24.81 (0**) 5 
RGARCH-SSTD-RRV 1.19 (0.27) 2.66 (0.26) 11.9 (0.1) 1 3.51 (0.06) 4.3 (0.12) 15.48 (0.03*) 2 
RGARCH-GED-RRV 0.78 (0.38) 2.67 (0.26) 9.77 (0.2) 7 2.53 (0.11) 3.64 (0.16) 10.31 (0.17) 7 
RGARCH-NIG-RRV 1.19 (0.27) 2.66 (0.26) 11.92 (0.1) 3 2.53 (0.11) 3.64 (0.16) 9.74 (0.2) 6      

0.42     0.36 
NIG-DCS 0.92 0.37 (0.54) 2.75 (0.25) 11.19 (0.13) 1 0.97 0.37 (0.54) 4.9 (0.09) 14.97 (0.04*) 2 
RGARCH-SSTD-RV 1.05 (0.31) 3.95 (0.14) 16.35 (0.02*) 5 4.99 (0.03*) 5.04 (0.08) 22.86 (0**) 4 
RGARCH-GED-RV 1.05 (0.31) 3.95 (0.14) 16.34 (0.02*) 7 4.99 (0.03*) 5.04 (0.08) 22.89 (0**) 3 
RGARCH-NIG-RV 1.05 (0.31) 3.95 (0.14) 16.33 (0.02*) 3 3.71 (0.05) 3.84 (0.15) 22.1 (0**) 5 
RGARCH-SSTD-RRV 0.64 (0.42) 4.15 (0.13) 14.13 (0.05) 2 3.71 (0.05) 3.84 (0.15) 12.97 (0.07) 1 
RGARCH-GED-RRV 0.64 (0.42) 4.15 (0.13) 13.77 (0.06) 4 4.99 (0.03*) 6.46 (0.04*) 18.35 (0.01*) 7 
RGARCH-NIG-RRV 0.64 (0.42) 4.15 (0.13) 14.14 (0.05) 6 3.71 (0.05) 3.84 (0.15) 12.97 (0.07) 6      

0.37     0.36 
NIG-DCS 0.93 0.28 (0.59) 3.85 (0.15) 13.88 (0.05) 1 0.98 0.24 (0.62) 2.62 (0.27) 10.93 (0.14) 1 
RGARCH-SSTD-RV 1.41 (0.24) 3.4 (0.18) 17.95 (0.01*) 5 4.22 (0.04*) 4.89 (0.09) 23.53 (0**) 3 
RGARCH-GED-RV 1.41 (0.24) 3.4 (0.18) 17.99 (0.01*) 6 4.22 (0.04*) 4.89 (0.09) 23.57 (0**) 2 
RGARCH-NIG-RV 1.41 (0.24) 3.4 (0.18) 17.94 (0.01*) 4 4.22 (0.04*) 4.89 (0.09) 23.54 (0**) 5 
RGARCH-SSTD-RRV 1.41 (0.24) 3.4 (0.18) 12.61 (0.08) 2 5.8 (0.02*) 6.24 (0.04*) 26.39 (0**) 4 
RGARCH-GED-RRV 1.41 (0.24) 3.4 (0.18) 12.21 (0.09) 7 5.8 (0.02*) 6.24 (0.04*) 29.55 (0**) 7 
RGARCH-NIG-RRV 0.91 (0.34) 3.4 (0.18) 14.49 (0.04) 3 5.8 (0.02*) 6.24 (0.04*) 26.39 (0**) 6      

0.34     0.36 
NIG-DCS 0.94 0.01 (0.92) 3.58 (0.17) 15 (0.06) 1 0.99 3.73 (0.05) 6.11 (0.05) 25.91 (0**) 5 
RGARCH-SSTD-RV 3.44 (0.06) 5.44 (0.07) 23 (0) 4 2.08 (0.15) 2.29 (0.32) 20.26 (0.01*) 4 
RGARCH-GED-RV 3.44 (0.06) 5.44 (0.07) 23.04 (0) 6 3.73 (0.05) 6.11 (0.05) 41.11 (0***) 6 
RGARCH-NIG-RV 3.44 (0.06) 5.44 (0.07) 22.99 (0) 5 2.08 (0.15) 2.29 (0.32) 20.26 (0.01*) 2 
RGARCH-SSTD-RRV 2.61 (0.11) 5.1 (0.08) 18.63 (0.01) 2 0.84 (0.36) 0.98 (0.61) 1.73 (0.97) 1 
RGARCH-GED-RRV 2.61 (0.11) 5.1 (0.08) 17.66 (0.01) 7 8.01 (0**) 9.35 (0.01*) 40.83 (0***) 7 
RGARCH-NIG-RRV 2.61 (0.11) 5.1 (0.08) 18.65 (0.01) 3 2.08 (0.15) 2.29 (0.32) 28.49 (0**) 3      

0.36     0.35 

Note: *, **, and *** represent statistical significance levels of 5%, 1%, and 0.1%, respectively. The rank tells the superiority of these four models under a default level of 
α and p-value helps to prove the non-rejection of this superiority. The p-value of the relevant test is indicated by the value in parentheses. Bold text indicates rejections 
at the * probability level.  
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Table B4 
Back testing results of out-of-sample daily VaR forecasts, SZ399001.   

Alpha LRuc statistics LRcc statistics DQ statistics MCS 
(α = 0.15) 

Alpha LRuc statistics LRcc statistics DQ statistics MCS 
(α = 0.15) 

NIG-DCS 0.9 0.02 (0.9) 0.1 (0.95) 8.16 (0.32) 2 0.95 0.63 (0.43) 0.64 (0.73) 6.39 (0.5) 1 
RGARCH-SSTD-RV  0.02 (0.9) 0.89 (0.64) 4.67 (0.7) 4  2.55 (0.11) 2.89 (0.24) 14.87 (0.04*) 4 
RGARCH-GED-RV  0.02 (0.9) 0.89 (0.64) 4.73 (0.69) 1  2.55 (0.11) 2.89 (0.24) 14.99 (0.04*) 2 
RGARCH-NIG-RV  0.02 (0.9) 0.89 (0.64) 4.68 (0.7) 3  2.55 (0.11) 2.89 (0.24) 14.89 (0.04*) 3 
RGARCH-SSTD-RRV 0.11 (0.74) 2 (0.37) 9.7 (0.21) 5  2.55 (0.11) 2.89 (0.24) 13.44 (0.06) 5 
RGARCH-GED-RRV  0.11 (0.74) 2 (0.37) 9.71 (0.21) 7  2.55 (0.11) 2.89 (0.24) 13.48 (0.06) 7 
RGARCH-NIG-RRV  0.11 (0.74) 2 (0.37) 9.7 (0.21) 6  2.55 (0.11) 2.89 (0.24) 13.44 (0.06) 6      

0.39     0.38 
NIG-DCS 0.91 0.44 (0.5) 0.53 (0.77) 9.15 (0.24) 2 0.96 0.5 (0.48) 0.76 (0.68) 8.24 (0.31) 1 
RGARCH-SSTD-RV  0.05 (0.82) 0.4 (0.82) 3.41 (0.85) 4  3.51 (0.06) 4.3 (0.12) 23.9 (0**) 4 
RGARCH-GED-RV  0.2 (0.65) 0.4 (0.82) 3.96 (0.78) 1  3.51 (0.06) 4.3 (0.12) 24.07 (0**) 2 
RGARCH-NIG-RV  0.05 (0.82) 0.4 (0.82) 3.42 (0.84) 3  3.51 (0.06) 4.3 (0.12) 23.93 (0**) 3 
RGARCH-SSTD-RRV 0.2 (0.65) 1.39 (0.5) 10.44 (0.17) 5  5.85 (0.02*) 6.19 (0.05) 20.32 (0**) 5 
RGARCH-GED-RRV  0.2 (0.65) 1.39 (0.5) 10.43 (0.17) 7  5.85 (0.02*) 6.19 (0.05) 20.36 (0**) 7 
RGARCH-NIG-RRV  0.2 (0.65) 1.39 (0.5) 10.44 (0.16) 6  5.85 (0.02*) 6.19 (0.05) 20.31 (0**) 6      

0.38     0.38 
NIG-DCS 0.92 0.33 (0.57) 0.88 (0.64) 10.49 (0.16) 4 0.97 0.37 (0.54) 1.34 (0.51) 5.5 (0.6) 1 
RGARCH-SSTD-RV  0.12 (0.73) 0.92 (0.63) 6.65 (0.47) 3  3.71 (0.05) 3.84 (0.15) 38.36 (0**) 4 
RGARCH-GED-RV  0.12 (0.73) 0.92 (0.63) 6.76 (0.45) 1  3.71 (0.05) 3.84 (0.15) 38.68 (0**) 2 
RGARCH-NIG-RV  0.12 (0.73) 0.92 (0.63) 6.68 (0.46) 2  3.71 (0.05) 3.84 (0.15) 38.41 (0**) 3 
RGARCH-SSTD-RRV 0.64 (0.42) 2.21 (0.33) 8.75 (0.27) 5  4.99 (0.03*) 6.46 (0.04) 38.84 (0**) 5 
RGARCH-GED-RRV  0.64 (0.42) 2.21 (0.33) 8.75 (0.27) 7  4.99 (0.03*) 6.46 (0.04) 38.89 (0**) 7 
RGARCH-NIG-RRV  0.64 (0.42) 2.21 (0.33) 8.75 (0.27) 6  4.99 (0.03*) 6.46 (0.04) 38.82 (0**) 6      

0.32     0.37 
NIG-DCS 0.93 0.22 (0.64) 1.69 (0.43) 12.54 (0.08) 2 0.98 1.71 (0.19) 3.05 (0.22) 10.02 (0.19) 1 
RGARCH-SSTD-RV  0.91 (0.34) 1.71 (0.43) 8.4 (0.3) 4  7.57 (0.01*) 7.83 (0.02*) 34.93 (0**) 4 
RGARCH-GED-RV  0.91 (0.34) 1.71 (0.43) 8.52 (0.29) 1  7.57 (0.01*) 7.83 (0.02*) 35.26 (0**) 2 
RGARCH-NIG-RV  0.91 (0.34) 1.71 (0.43) 8.43 (0.3) 3  7.57 (0.01*) 7.83 (0.02*) 34.97 (0**) 3 
RGARCH-SSTD-RRV 1.41 (0.24) 3.4 (0.18) 10.9 (0.14) 5  9.51 (0**) 9.65 (0.01*) 61.37 (0**) 5 
RGARCH-GED-RRV  2 (0.16) 3.57 (0.17) 11.41 (0.12) 7  9.51 (0**) 9.65 (0.01*) 61.72 (0**) 7 
RGARCH-NIG-RRV  1.41 (0.24) 3.4 (0.18) 10.9 (0.14) 6  7.57 (0.01*) 7.83 (0.02*) 64.9 (0**) 6      

0.37     0.37 
NIG-DCS 0.94 0.77 (0.38) 1.11 (0.57) 5.15 (0.64) 1 0.99 2.08 (0.15) 2.29 (0.32) 12.53 (0.08) 1 
RGARCH-SSTD-RV  1.27 (0.26) 1.46 (0.48) 10.2 (0.18) 4  3.73 (0.05) 4.03 (0.13) 25.71 (0**) 4 
RGARCH-GED-RV  0.77 (0.38) 1.11 (0.57) 10.97 (0.14) 2  5.72 (0.02*) 6.14 (0.05) 35.24 (0**) 2 
RGARCH-NIG-RV  1.27 (0.26) 1.46 (0.48) 10.23 (0.18) 3  3.73 (0.05) 4.03 (0.13) 25.87 (0**) 3 
RGARCH-SSTD-RRV 1.89 (0.17) 2.99 (0.22) 11.56 (0.12) 5  13.33 (0**) 14 (0**) 65.95 (0***) 5 
RGARCH-GED-RRV  1.89 (0.17) 4.94 (0.08) 17.04 (0.02*) 7  16.32 (0**) 16.76 (0**) 81.23 (0***) 7 
RGARCH-NIG-RRV  1.89 (0.17) 2.99 (0.22) 11.55 (0.12) 6  13.33 (0**) 14 (0**) 65.99 (0***) 6      

0.36     0.38 

Note: *, **, and *** represent statistical significance levels of 5%, 1%, and 0.1%, respectively. The rank tells the superiority of these four models under a default level of 
α and p-value helps to prove the non-rejection of this superiority. The p-value of the relevant test is indicated by the value in parentheses. Bold text indicates rejections 
at the * probability level.  

Table B5 
P-values of LM test for in-sample parameter’s scores of daily return.   

mu lamda nu theta 

SH000001 0.13 0.38 0.17 0.1 
SZ399001 0.22 0.61 0.61 0.46  

Note: a p-value greater than 0.05 indicates that the null hypothesis 
that the sequence is not self-correlated is not rejected.  
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Table B6 
P-values of LM test for in-sample parameter’s scores of 30 min return.  

Period SH000001-mu SH000001-nv SZ399001-mu SZ399001-nv 

1 0.18 1 0.49 1 
2 0.73 1 0.94 0.88 
3 0.8 0.55 0.34 0.4 
4 0.97 0.34 0.17 1 
5 0.18 0.95 0.96 0.16 
6 1 0.11 0.42 1 
7 0.56 0.05 0.13 0.1 
8 0.87 0.22 0.48 1 

Note: a p-value greater than 0.05 indicates that the null hypothesis that the sequence is not self-correlated is not rejected.  

Table B7 
P-values of LM test for out-of-sample parameter’s scores of daily return.   

mu lamda nu theta 

SH000001 1 1 0.28 1 
SZ399001 0.35 0.98 0.5 0.14 

Note: a p-value greater than 0.05 indicates that the null hypothesis that the sequence is not self- 
correlated is not rejected.  

Table B8 
P-values of LM test for out-of-sample parameter’s scores of 30 min return.   

SH000001-mu SH000001-nv SZ399001-mu SZ399001-nv 

1 0.88 0.3 0.32 0.23 
2 0.28 0.94 0.25 0 
3 0.77 0.1 1 0.21 
4 0.37 0.01 1 0.12 
5 1 0.96 0.95 0.55 
6 0.81 0.34 0.89 1 
7 0.41 0.39 0.97 0.57 
8 0.09 0.93 0.82 0.84 

Note: a p-value greater than 0.05 indicates that the null hypothesis that the sequence is not self-correlated is not rejected. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.irfa.2022.102180. 
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