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ABSTRACT

Increasing atmospheric carbon dioxide (CO2) is expected to be the main factor of global warming. The relation between CO2 concentrations
and surface air temperature (SAT) has been found related to Rossby waves based on a multi-layer complex network approach. However, the
significant relations between CO2 and SAT occur in the South Hemisphere that is not that much influenced by human activities may offer
not enough information to formulate targeted carbon reduction policies. Here, we address it by removing the effects of the Rossby waves
to reconstruct CO2 concentrations and SAT multi-layer complex network. We uncover that the CO2 concentrations are strongly associated
with the surrounding SAT regions. The influential regions of CO2 on SAT occur over eastern Asia, West Asia, North Africa, the coast of
North American, and Western Europe. It is shown that CO2 over Siberia in phase with the SAT variability in eastern East Asia. Indeed, CO2

concentration variability is causing effects on the recent warming of SAT in some middle latitude regions. Furthermore, sensitive parameters
that CO2 impacts SAT of top 15 carbon emissions countries have been identified. These countries are significantly responsible for global
warming, giving implications for carbon emissions reductions. The methodology and results presented here not only facilitate further research
in regions of increased sensitivity to the warming resulting from CO2 concentrations but also can formulate strategies and countermeasures
for carbon emission and carbon reduction.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040360

The rising of atmospheric carbon dioxide (CO2) has a great influ-
ence on global warming. The relation between CO2 concentra-
tions and surface air temperature (SAT) has been found related to
Rossby waves. However, their dynamic modes have still remained
a challenging problem, in particular for the North Hemisphere
that is much influenced by human activities. In the present work,
we develop a multi-layer climate network-based framework. By
eliminating Rossby waves, we find that CO2 concentrations are
related to their surrounding SAT in 2 days. CO2 concentra-
tions variability is causing effects on the recent warming of SAT
in some middle latitude regions. In addition, the critical and
sensitive regions of CO2 concentrations on SAT are identified.
Our method and results presented here not only provide a deep

understanding of the modes of CO2 concentration to SAT but
also can be applied to study other climate and environmental
phenomena, such as global warming and air pollution.

I. INTRODUCTION

Carbon dioxide (CO2) is one of the most important anthro-
pogenic greenhouse gases in Earth’s atmosphere. Despite global
efforts to reduce CO2 emissions, atmospheric CO2 concentrations
have been increasing worldwide since the industrial revolution
reached 146% of the preindustrial level in 2017.1 In the short term,
CO2 concentrations are widely considered to affect the weather by
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influencing SAT and sea ice cover, which are key leading indicators
of the annual and decadal atmospheric circulation, and, conse-
quently, resulting in torrential rains, blizzards, drought, and other
types of extreme events.2–5 In the long term, increases in atmospheric
CO2 concentrations are believed to be the primary cause of global
warming.6 Global warming has been linked to extreme weather and
climate events that have profoundly affected human societies and
natural ecosystems. In addition, the impact of CO2 concentrations
on SAT should be well understood to retard the adverse impact of
climate warming.

Considerable research has been devoted to assessing the rela-
tionship between CO2 concentrations and SAT. The earliest study
can be traced back to Fourier who demonstrated the atmosphere
absorbs longwave radiation from the Earth’s surface.7,8 By visually
inspect ice-core CO2 measurements and reconstructed paleocli-
matic records, the study found that atmospheric CO2 has a close cor-
relation with SAT.9 Strong coupling relations between CO2 and SAT
derived from ice-core records at least the last 650 000 years.10,11 How-
ever, Antarctic ice cores were not applicable for globally averaged
temperature. Antarctic temperature increase led the CO2 increase
during the last deglaciation but global temperature lagged CO2.12

Furthermore, their relation can be estimated from observations of
atmospheric CO2 and SAT. Based on Mauna Loa and South Pole
Stations, global average CO2 concentrations lagged 4 months to
the tropical mean SAT since 1960.13 Wang et al. exhibited interan-
nual variations of the CO2 growth rate are correlated tightly with
tropical land SAT during 1959–2011.14 Humlum et al. found that
atmospheric global mean CO2 concentrations lag the global average
SAT during 1980–2012.15 Richardson pointed out that the conclu-
sion violates conservation of mass16 and temperature changes lagged
9 months in atmospheric CO2. More recent research demonstrated
that global SAT lags or leads atmospheric CO2 depending on the
type of radiative forcing as well as its time scale.17 These previous
studies suggest that there exists a strong correlation between CO2

concentrations and SAT, however, the lead–lag role is still no com-
plete consensus. In addition, their relationship is also calculated
using climate sensitivity, which is a straightforward and efficient
metric to quantify global SAT response to increasing atmospheric
CO2. Past studies suggested that the global SAT change is nearly
proportional to cumulative CO2 emissions based on the Earth sys-
tem model.18,19 However, model results are prone to uncertainties
induced by different representations of carbon cycle processes in
the simulations. The above studies do not provide a mechanistic
understanding of how global CO2 variability causes the change of
SAT.

CO2 retrievals from satellite measurements have found that
atmospheric CO2 concentrations are spatially unevenly distributed.
However, the role of non-dynamics CO2 to SAT was still not well
understood since previous studies analyzed the role of average CO2

on SAT instead of non-dynamics CO2. Therefore, an improved
understanding of the role of CO2 concentrations in SAT is needed,
which is beneficial to reduce CO2 emissions through regulation and
incentives.

In recent years, network theory has been found useful for better
understanding spatiotemporal behavior in the climate system.20–22

Climate networks establish correlations among climate anomalies
in distant parts of the world and attempts to explain them using

relevant physical phenomena. In a climate network, geography data
are transformed into nodes and edges of a network that can repre-
sent spatiotemporal relationships. Nodes refer to geographical loca-
tions or grid sites, and edges are constructed based on similarities
(such as cross correlations) in the variability over time between pairs
of nodes. Various climate data records (such as temperature, pres-
sure, winds, and precipitation) can be used to construct a climate
network. The climate network approach can provide a powerful
framework to better understanding the structure and pattern of cli-
mate phenomena such as El Niño,23–27 North Atlantic Oscillation,28,29

monsoon,30 extreme rain events,31–33 and air pollution.34 Climate net-
work approach has been successfully applied to SAT records and
CO2 data. For instance, based on the SAT records, Wang et al. stud-
ied the positive and negative correlations (links) of SAT network and
identified the characteristics of Rossby waves.35 Zhou et al. studied
the global behavior of the climate system and captured the dom-
inant teleconnections paths.36 Based on CO2, propagation links of
teleconnections in CO2 concentrations were identified.37 In this case,
climate networks provide a well-suited general framework to analyze
the spatial characteristics of time series and the correlations between
nodes.

The basic idea behind climate networks is that relevant and
important features of atmospheric mechanisms influence the vari-
ability of CO2 concentrations and SAT at different locations, and
these influences are encoded in the structure of the network. By
extracting the topological index of the network, we can reveal the
underlying interaction between CO2 concentrations and SAT. In a
recent study, a multi-layer and multi-variable network analysis have
been developed and applied to investigate the relations between CO2

concentrations and SAT.38 They documented that the function of
Rossby waves for the modulation of relations between CO2 con-
centrations and SAT. It showed that the connections between CO2

concentrations and SAT are dominant in the Southern Hemisphere
(SH) relative to the Northern Hemisphere (NH). More specifically,
these links yield a dense stripe in a band centered at around 50°S.
Note that CO2 concentrations are mainly concentrated in the NH
where the industry is developed and human activities are intensive
and recent warming is more pronounced in the NH. Attention to
the responsibilities of CO2 changes on SAT in the NH could be more
fundamental in curbing greenhouse gas emissions and limit adverse
impacts. In this paper, we attempt to develop a framework to elim-
inate the influence of Rossby waves signal to identify the key area
of CO2 concentrations directly related to SAT. The multi-layer net-
work between CO2 concentrations and SAT is reconstructed based
on the climate network approach. Furthermore, sensitive parame-
ters that CO2 impacts SAT of top 15 carbon emissions country has
been identified to give implications for carbon emissions reductions.
Our results can help to formulate strategies and countermeasures for
carbon emission and carbon reduction.

II. DATA

A. Mid-tropospheric CO2 concentrations

Atmospheric Infrared Sounder (AIRS) is the first in the new
generation of high spectral resolution infrared sounder instruments
flown aboard the National Aeronautics and Space Administration
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(NASA) Aqua satellite mission. It is mounted on the sun-
synchronous, near-polar orbiting satellite where the range of wave
numbers 690–725 cm−1 are chosen for the retrievals of CO2 mix-
ing ratio in the mid-troposphere. The weighting functions of AIRS
CO2 channels peak between 300 and 500 hPa, and the CO2 data
are retrieved globally under clear and cloudy conditions. Here, we
employ CO2 concentrations measurements from AIRS with daily
temporal and 2.5° × 2.0° spatial resolutions over 60°S to 80°N.39 To
keep consistent with SAT data, 100 944 nodes of CO2 concentra-
tions have been interpolated onto 2.5° × 2.5°. Before 2012, the AIRS
retrievals are combined with the Advanced Microwave Sounding
Unit (AMSU); after 2012, AIRS retrievals only applied infrared mea-
surements because of the degradation of AMSU. To get a longer CO2

record, we have used AIRS/AMSU retrievals and AIRS retrievals of
CO2 together in this study. The missing values from 2003 to 2016
in the CO2 concentration grid points are removed, resulting in 322
days per year. Hence, the total time length is 4508 days.

B. SAT

SAT data obtained from the National Centres for Envi-
ronmental Prediction/National Centre for Atmospheric Research
(NCEP/NCAR) on daily temporal and 2.5° × 2.5° spatial resolu-
tions are used in this study.40 To be consistent with the length of
CO2 records, we pick 322 days in each year from 2003 to 2016
according to the date of CO2. To keep an approximate homogeneity
covering the globe (60° S–80° N), we consider a subset of N = 658
nodes of the mid-tropospheric CO2 and SAT (see all the dots in
Fig. 3). Ultimately, we obtained 658 time series and M = 432 964
pairs representing possible links.

III. METHODS

A. Data pre-processing

Linear tendency and seasonal cycle are dominant in AIRS CO2

concentrations and SAT data. Given a CO2 record, C̃′
i(t), where i is

the node index of the CO2 concentrations (i = 1,2,. . . ,658) and t is
the length of the CO2 time series(t = 1,2,. . . , 322 × 14). The linear
trend is removed as C̃i(t) = C̃′

i(t) − (ait + bi), where ait + bi is the
linear trend of the CO2 concentrations on the total number of day
t. Leap days are excluded for simplicity. Next, we remove the long-
term mean and divide by its corresponding standard deviation as
C

y
i (d) = (C̃

y
i (d) −

∑

y

C̃
y
i (d)/N)/std(C̃

y
i (d)). The effects of autocorre-

lations in the records are eliminated by the denominator. Finally, the
anomalies CO2 time series of each node i is rewritten as Ci(t). For

SAT records,
∼

Tj(t) (j = 1,2,. . . ,658), we constructed their anomalies
SAT as the way of CO2 records and denoted as Ti(t). After that, we
get the CO2 anomaly records Ci(t) and SAT anomaly records Tj(t).

B. Method of removing Rossby waves

Rossby waves corresponding weather change cycle is approxi-
mately a week (see Fig. S1 in the supplementary material). The time
delay associated with the wavelengths of Rossby waves in the CO2

concentrations and SAT multi-layer network is 3–5 days.38 Here,
moving average methods are used to removing the role of Rossby

waves. We choose 7 days as an appropriate width of the window,
which is explained later. We calculate a 7-day moving average for
each node and then glue each 7th day in the period of the records to
yield new records. We measure the correlation coefficient and link’s
weights based on the new glued records. Here, we explain why we
choose 7 days as the width of the window. We generate new records
by using the width of window range from 3 to 10 days and then
calculate their positive and negative links, respectively (see Fig. S2
in the supplementary material). It is overserved that after 6 days,
positive and negative link weights do not enhance around the wave-
length of Rossby waves. Thus, any size of the sliding window longer
than 6 days gives the results eliminating the effect of Rossby waves.
Yet, the weight links yield stronger strength when using a sliding
window of 7 days. Therefore, our choice of sliding window, 7 days,
is suitable for evaluating the characteristic of the network.

C. Network construction

Similar to earlier studies,34,38 we define XCi ,Tj
(τ ) as the time-

delayed cross -correlation function for the CO2 node i and SAT node
j. The time lags τ is in the range between −100 and +100 days. The
time lag is chosen to be long enough to avoid the sensitive of corre-
lation estimation to our choice of time lag, which leads to erroneous
correlation estimation. The strength of the positive and negative link
weights is denoted as W

pos

Ci ,Tj
and W

neg

Ci ,Tj
. We define τ

pos

Ci ,Tj
and τ

neg

Ci ,Tj
as

the corresponding time lags at these two peaks. When τCi ,Tj
> 0, the

links are outgoing from CO2 nodes pointing to SAT nodes; when
τCi ,Tj

< 0, the links are pointing away from SAT nodes incoming

to CO2 nodes. Here, links with zero-time lags are excluded. The
adjacency matrix of a climate network is defined as follows:

A
pos

Ci ,Tj
=

{

1 if W
pos

Ci ,Tj
≥ Q and τ

pos

Ci ,Tj
> 0,

0 else,
(1)

A
neg

Ci ,Tj
=

{

1 if W
neg

Ci ,Tj
≤ −Q and τ

neg

Ci ,Tj
> 0,

0 else.
(2)

Here, Q is a threshold for the weight links, which is determined
based on the shuffling procedure.41,42 In the shuffled case, the order
of years is permutated and the order of days within each year is
maintained for each pair of CO2 and SAT nodes i and j.41 This shuf-
fling keeps all the statistical quantities of the original data but omits
the physical dependencies between CO2 and SAT nodes. In such
a case, the shuffled network represents the properties of statistical
quantities and the autocorrelations of the original records, which
may introduce unrealistic links. If the original link weights are sig-
nificantly higher than that of the control, we regard it as a real link;
otherwise, they are spurious links. Then, we obtain the desired con-
nection between CO2 and SAT based on the adjacency matrix A

pos

Ci ,Tj

and A
neg

Ci ,Tj
.

The degree is the most common application for measuring cli-
mate networks. A link that points toward a node is referred to as an
in-degree link, and a link that points away from a node is considered
as an out-degree link. The way of CO2 dynamically influenced SAT
is defined as the weighted out-degree of CO2 nodes, which are the
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total outgoing link weights from CO2 nodes,26

O
pos
Ci

=
∑

j

Apos

Ci ,Tj
Wpos

Ci ,Tj
, (3)

O
neg
Ci

=
∑

j

Aneg

Ci ,Tj
Wneg

Ci ,Tj
. (4)

And, the response of SAT to CO2 is denoted as weighted in-
degree of SAT nodes, which are the total incoming links weights
pointing toward SAT nodes,

I
pos

Tj
=

∑

i

Apos

Ci ,Tj
Wpos

Ci ,Tj
, (5)

O
neg

Tj
=

∑

i

Aneg

Ci ,Tj
Wneg

Ci ,Tj
. (6)

Obviously, the outgoing links of the CO2 are the same as the
incoming links of the SAT. Nodes that have higher values represent a
larger amount of connection with other nodes in the network, while
lower ones mean “isolated” in the network. The in and out fields
describe the level of CO2 nodes impact on the SAT nodes and the
level of affected SAT node from CO2 nodes, respectively.

D. Significance tests

The statistical significance of link weights is determined based
on a shuffling procedure. In the shuffled case, the order of years is

FIG. 1. (a) The positive weighted links vs their distance for both original (blue dots) and shuffled (red dots) data. (b) Same as (a) but for negative weighted links. (c) The
positive weighted links vs their time lags for both original and shuffled data. (d) Same as (c) but for negative weighted links.
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permutated and the order of days within each year is maintained
for each pair of CO2 and SAT nodes i and j.41 We generate shuf-
fled data according to the procedures described in Sec. III D. This
shuffling keeps all the statistical quantities of the original data but
omits the physical dependencies between CO2 and SAT nodes. In
such a case, the shuffled network represents the properties of sta-
tistical quantities and the autocorrelations of the original records,
which may introduce unrealistic links. We choose a control for
the records to distinguish realistic links from unrealistic ones. If
the original link weights are significantly higher than that of the
control, we regard it as a real link; otherwise, they are spurious
links.

IV. RESULTS AND DISCUSSION

We present the main results of the correlated multi-layered
networks composed of the mid-troposphere CO2 concentrations

and SAT as described above. Figures 1(a) and 1(b) display link
weights (both positive and negative), WCi ,Tj

as a function of the

geographical distances, DCi ,Tj
(in km) for original and shuffle cases.

Higher W
pos

Ci ,Tj
and W

neg

Ci ,Tj
over short distances (smaller than 5000 km)

are observed in the original network but not in the shuffled data,
indicating the relations between CO2 and SAT are less likely to occur
by chance. It is clear that there is no strong distinction between the
original and shuffled link weights as a wide range of original link
weights is associated with the same shuffled link weights at a dis-
tance longer than 10 000 km. Figures 1(c) and 1(d) present WCi ,Tj

on the time lag for the original and shuffle case. Peaks are observed
around −1, 0, and 2 days for the positive and negative links in the
original network. These links in the shuffled network do not change
with time lag value. Strong WCi ,Tj

is related to short time lags (within

2 days), suggesting that the information propagation of these links
is fast.

FIG. 2. (a) The PDF of the positive link weights of original (blue) and shuffled (red) data. (b) Same as (a) but for negative weighted links. (c) The PDF of time lag τ > 0 of
the positive and negative links. (d) Same as (c) but for τ < 0.
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Figures 2(a) and 2(b) show the probability density function
(PDF) of W

pos

Ci ,Tj
and W

neg

Ci ,Tj
for original and shuffle cases. We find

that values in the original network have a long tail and there-
fore occur due to certain physical interactions. These differences
between the distribution of original data and shuffled data indicate
that many significant links exist in the multi-layer network. We,
thus, consider only links |WCi ,Tj

| ≥ 4.5, which are separated from

the shuffled links. Next, we investigate the PDF of time delays for
positive and negative links. For τCi ,Tj

> 0 [Fig. 2(c)], the direction

is toward the SAT nodes at the surface. Significant links peak with
a 2-day time delay, indicating that changes in the CO2 occur two
days before the correspondingly changes in the SAT. The PDF in
Fig. 2(d) shows the maximum values at −1 days, suggesting that
a high CO2 concentration is observed 1 day before a high level of
SAT.

The domain CO2 regions are quantified by the CO2 weighted
out-degrees of nodes associated with the total weights of the signif-
icant outgoing interlinks to the SAT. Figures 3(a) and 3(b) depict
the map of weighted out-degrees obtained from the positive and

negative links. The direction is toward the SAT nodes at the sur-

face. We find that the most prominent positive regions are located

over eastern Asia (35°–60°N, 90°–150°E), central west Asia, and

southeast Canada in the Northern Hemisphere (NH). Regions in

Western Asia, Western Europe, coastal areas of North America,
and North parts of Africa are characteristic by clustering negative
links toward SAT nodes. In the Southern Hemisphere (SH), high
positive values are observed in the eastern Australia, the adjacent
Pacific Ocean, and the Southern Atlantic Ocean. The negative inter-
links are mainly connected to the southern South America, southern
Africa and its surrounding seas, and the southern sea areas of

Australia. These locations that affect the SAT are densely populated
and industrialized areas.

The affected regions on the SAT are quantified by the weighted
in-degrees associated with the total weights of the significant incom-
ing interlinks from CO2 nodes, which are presented in Figs. 3(c)
and 3(d). The localized nodes of the strong positive values are found
in the central-east Asia (37.5°–52.5°N, 70°–150°E) and eastern and
central South America. Significant negative peaks are detectable over
the eastern Asia, Western Europe, the North Atlantic Ocean, and
central North America. In the SH, regions with larger positive val-
ues coincide with that of CO2. For negative cases, the centers in a
large swath of the southern Atlantic Ocean and the Indian Ocean,
the south part of Africa, and Australia are highlighted. Of note is that
these locations are most influenced by CO2. If the equatorial regions
are excluded, then the map of high values [Figs. 3(c) and 3(d)] to
some extent resembles Fig. 3(b).43

Based on the weighted degree index, we further provide sensi-
tive parameters that CO2 impacts SAT of top 15 carbon emissions
country, which is shown in Fig. 4. Four types are classified accord-
ing to the weighted out-degrees. China is the world’s biggest carbon
emitter, as expected, it gives rise to 0.64 °C increasing per unit of
ppm. In Australia, it displays an unexpected high influence value
(0.43), where is not that much-emitted carbon. As the second biggest
carbon emitter, the US brings to 0.32 °C increasing per unit of ppm,
which is half of that in China. The values in India, Russia, Japan,
and German are 0.32, 0.38, 0.35, and 0.31, respectively. The third
category contains Iran, Saudi Arabia, and France, the parameters
are 0.24, 0.23, and 0.3, respectively. These values in Canada, Brazil,
and Korea are 0.22, 0.21, and 0.2, respectively. In summary, the
rank of most weighted out-degrees is consistent with the rank of
their carbon emissions. Therefore, large carbon emissions countries

FIG. 3. The maps of weighted out-degrees (outgoing from the CO2 nodes) for positive (a) and (b) negative links, respectively. The maps of weighted in-degrees (incoming to
the SAT nodes) for positive (c) and (d) negative links, respectively.
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FIG. 4. Map of influence parameters of top 15 carbon emissions national.

are chiefly responsible for global warming, these countries must do
more to reduce carbon emissions.

To intuitively understand the propagation process from CO2

network to SAT network, we display their transport paths with
the following characteristics: (1) the distance ≤7500 km and (2)
|WCi ,Tj

| ≥ 4.5. These 98 positive links and 31 negative links are pre-

sented in Fig. 5. We find that the links are transported from high
latitude nodes to low latitude nodes. For positive links, the striking
links are propagated from CO2 in Siberia to SAT in eastern parts of
East Asia, suggesting that SAT in eastern parts of East Asia is con-
sistent with the variability of CO2 in Siberia. These links are located
over the downstream jet exit region.44 CO2 variability over the North
Atlantic is found to be consistent with the change of SAT in the
western Asia. Furthermore, the connection from CO2 nodes over
North America to the SAT nodes in eastern coastal regions is also
highlight, which is a portion of wave train pattern generated by the

FIG. 5. The maps of propagation links for positive (red solid lines) and negative
(black solid lines) links from CO2 to SAT.

North Atlantic Oscillation (NAO) from the North Atlantic to East
Asia.45,46 Noted that the starting point and ending point of the above
links are closely associated with prominent “centers of action” over
European Russia, west-central Asia, East Asia, the North Pacific, and
North America.47 To intuitively understand these propagation links,
we investigated the links with Rossby waves and without Rossby
waves (see Fig. S3 in the supplementary material).

For negative cases, we observed that a group of negative links
transport eastward from CO2 in the central United States to SAT
in West Europe. It indicates that changes in the CO2 concentra-
tion are opposite to the changes in SAT. Negative links from CO2

in North Atlantic directed to SAT in the Mediterranean region and
even North Africa are also detectable. These links yield a clear con-
nection with the North Atlantic storm track.48 Wave trains emerging
in the southern part of the North Atlantic storm track transport
to the Mediterranean region and subsequently propagate eastward
along with the subtropical westerly jet.49 It is also noted that nega-
tive links propagate from CO2 in eastern China to SAT in the Pacific
Ocean, which is less pronounced. This path is probably consistent
with the wave train linking Asia and North America.50 In the SH,
the connectivity pattern shows dense links in the 40°S band within
the longitude from South America to Australia.

V. CONCLUSIONS

In this study, we developed a climate network approach to
study the relations between CO2 concentrations and SAT. We have
found that the influence of mid-tropospheric CO2 concentrations on
SAT is significant. This is achieved by removing the Rossby waves
signal in CO2 and SAT records to construct a multi-layered network
between CO2 and SAT. The striking link weights occur in the near
distance, suggesting CO2 is strongly associated with its surround-
ing regions of SAT. The critical regions that CO2 affects SAT are
found to be in the eastern Asia, West Asia, eastern North American,
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and Western Europe in the NH. Other successive centers of higher
levels are observed in southern South America and south and east
sea areas of Australia in the SH. These sensitive regions correspond
to regions that are much influenced by human activities and higher
CO2 concentrations. Moreover, sensitive regions that are affected
by CO2 are observed over Siberia, Western Europe, North America,
and southern South America. The influence parameters that CO2

concentrations affected SAT of large carbon emissions country are
determined. The magnitude of values, in general, conforms to the
order of carbon emissions, suggesting large carbon emissions coun-
tries are chiefly responsible for global warming. In addition, explicit
transport links are analyzed to investigate the process of CO2 on
SAT. The results indicate the change of CO2 is causing effects on the
recent warming of SAT in some middle latitude regions. These links
follow atmosphere circulation, such as the North Atlantic storm
track, NAO, and subtropical westerly jet.

Rossby waves are removed to investigate the critical regions
that influence the CO2 on the SAT and sensitive regions of SAT
affected by CO2. The identification of these regions is conducive to
the development of targeted carbon reduction policies and thus mit-
igating the adverse effects of climate change. Our results show that
recent warming in eastern East Asia may be related to the change of
CO2 concentration in Siberia. Large carbon emissions countries are
chiefly responsible for global warming, which have implications for
carbon emissions reductions. This study not only provides comple-
mentary support for the results from the observational data-based
study and the climate modeling but also calls for attention for further
research in regions of increased sensitivity to the warming result-
ing from CO2. Compared with sensitive regions from the former
study,38 our results are can be more helpful for global carbon emis-
sion reduction. Moreover, our framework provides a bridge between
the network analysis and the complex climate system.

SUPPLEMENTARY MATERIAL

See the supplementary material for the time lag of the func-
tion of Rossby waves in CO2 concentrations and SAT multi-layer
network and explaining the appropriate width of the window for
removing Rossby waves.
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