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ABSTRACT
BACKGROUND: Neuroimaging studies have reported functional connectome aberrancies in autism spectrum dis-
order (ASD). However, the time-varying patterns of connectome topology in individuals with ASD and the connection
between these patterns and gene expression profiles remain unknown.
METHODS: To investigate case-control differences in dynamic connectome topology, we conducted mega- and
meta-analyses of resting-state functional magnetic resonance imaging data of 939 participants (440 patients with
ASD and 499 healthy control subjects, all males) from 18 independent sites, selected from the Autism Brain
Imaging Data Exchange (ABIDE) dataset. Functional data were preprocessed and analyzed using harmonized
protocols, and brain module dynamics was assessed using a multilayer network model. We further leveraged
postmortem brain-wide gene expression data to identify transcriptomic signatures associated with ASD-related
alterations in brain dynamics.
RESULTS: Compared with healthy control participants, individuals with ASD exhibited a higher global mean and
lower standard deviation of whole-brain module dynamics, indicating an unstable and less regionally differentiated
pattern. More specifically, individuals with ASD showed higher module switching, primarily in the medial prefrontal
cortex, posterior cingulate gyrus, and angular gyrus, and lower switching in the visual regions. These alterations in
brain dynamics were predictive of social impairments in individuals with ASD and were linked with expression
profiles of genes primarily involved in the regulation of neurotransmitter transport and secretion as well as with
previously identified autism-related genes.
CONCLUSIONS: This study is the first to identify consistent alterations in brain network dynamics in ASD and the
transcriptomic signatures related to those alterations, furthering insights into the biological basis behind this disorder.

https://doi.org/10.1016/j.biopsych.2021.12.004
Autism spectrum disorder (ASD) is a highly heritable neuro-
developmental disorder characterized by persistent impair-
ments in social communication and the presence of restricted
and repetitive patterns of behavior (1,2). Contemporary views
of ASD conceptualize it as a connectome dysfunction syn-
drome (3,4), manifesting as aberrant functional connectivity in
the brain, especially in the default mode network (DMN) (5–8).
ASD-related aberrancies in the brain connectome are linked
with individual clinical symptoms (8–10) and impairments in
cognitive ability (11,12). These studies have provided insights
into understanding the biological underpinnings of ASD from a
network perspective.

However, despite its importance for understanding the
disorder, previous functional connectome studies on ASD
have focused primarily on the static (i.e., time-invariant) con-
nectivity patterns, largely ignoring the temporal characteristic
of brain networks. The human brain can be thought of as a
highly dynamic networked system that exhibits connectivity
N: 0006-3223
reconfigurations over time (13,14). These dynamic reconfigu-
rations are essential for efficient intermodule communication
(15), flexible cognitive functions (16,17), and rapid response to
the external environment (18). Although several prior studies
have reported alterations in brain connectome dynamics in
ASD, such as increased connectivity variability (19–23) and
fewer transitions between connectivity states (24–26), the to-
pological features of dynamic brain networks in ASD remain
understudied. Investigating the temporally fluctuating patterns
in ASD brain network topology, in particular the properties of
modular switching, will advance our understanding of how
dynamic interactions of different network components under-
pin cognitive dysfunction and clinical symptoms in patients
(27). Thus, the time-varying pattern of functional connectome
topology in ASD is a pertinent area that warrants further
research.

Genetic factors are considered to be a predominant cause
of ASD (1). Previous twin and family studies have confirmed the
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prominent heritability of ASD and ASD-associated traits (28).
An increasing number of susceptibility genes have been
identified, such as common variants (29) and rare, de novo
variants (30). Recently, a large-scale exome sequencing study
of ASD identified more than 100 putative ASD-associated risk
genes, the majority of which are neuronally expressed (31).
RNA microarray and sequencing studies of postmortem ASD
brain samples also demonstrated transcriptionally altered
genes and affected pathways (32). A recent study suggests
that the spatial layout of network module dynamics in healthy
brains is linked to the expression level of genes associated
with potassium ion channel activity regulation and mitochon-
dria (33). Thus, we speculate that the alteration of brain
network dynamics in ASD is related to the expression profile of
previously identified autism-related genes.

To address these questions, we conducted the first mega-
and meta-analyses for the identification of significant alter-
ations in connectome dynamics in ASD. We used resting-state
functional magnetic resonance imaging data from 939 partic-
ipants selected from 18 independent sites (34,35) and
employed a multilayer network model (36) to characterize the
topological dynamics of the functional connectome. The
mega- and meta-analyses were performed separately, using
harmonized image processing and network analysis protocols.
Finally, we conducted a partial least squares (PLS) regression
analysis to determine the link between abnormal network dy-
namics and transcriptional profiles. We hypothesized that 1)
patients with ASD would show significant alterations in brain
connectome dynamics compared with healthy control (HC)
subjects, in particular in the DMN regions, and 2) these alter-
ations in brain dynamics would be associated with individual
social impairments in patients and the expression profiles of
genes that were enriched for previously published ASD-related
gene sets.

METHODS AND MATERIALS

Datasets

We selected resting-state functional magnetic resonance im-
aging data from 440 individuals with ASD and 499 HC subjects
(all males; age range, 5–35 years old; collected at 18 inde-
pendent sites) (Figure S1) from the publicly available Autism
Brain Imaging Data Exchange (ABIDE) I and ABIDE II datasets
(http://fcon_1000.projects.nitrc.org/indi/abide/) (34,35) after
screening based on strict criteria (Supplement).

Data Preprocessing

All resting-state functional magnetic resonance imaging data
were preprocessed with a standardized and harmonized
pipeline using the GRETNA package (37) (Supplement).

Constructing Dynamic Brain Connectomes

For each individual, dynamic brain connectomes were gener-
ated using a sliding window approach (14,38). Specifically,
network nodes were defined as 512 regions of interest with
uniform areas obtained from a random parcellation (39). Within
each time window, we estimated the internode functional
connections by calculating the Pearson correlation coefficient
between nodal time courses. Here, the window length was set
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as 60 seconds and the sliding step was set as one repetition
time. Finally, we obtained weighted dynamic connectomes by
applying a network threshold with a fixed density (density =
15%) to reduce the influence of weak or spurious connectiv-
ities (16).

Tracking Dynamic Modular Structures

We used a multilayer network model (36) to identify the
time-varying features of connectome topology (Figure 1A).
This model incorporates connectivity information from
adjacent windows and assumes temporal continuity of
modular configurations. Specifically, we conducted a
multilayer-variant Louvain algorithm (http://netwiki.amath.
unc.edu/GenLouvain) to identify the optimal modular archi-
tecture by maximizing the modularity index, Q (range, 0–1),
which denotes the extent of segregation between network
modules. Then, we computed the modular variability (16) of
each brain node to quantify how individual nodes dynami-
cally switched their modular affiliations over time
(Supplement). The larger the modular variability, the more
flexibly a brain node switches between modules.

Case-Control Comparison Analysis

Mega-analysis. To examine case-control differences in
module dynamics, we performed a mega-analysis by pooling
individual modular variability maps across all sites. Before
performing the analysis, we applied a ComBat harmonization
(40–42) to the modular variability maps to correct for site ef-
fects. We then estimated group differences in modular vari-
ability at both global (whole-brain mean and standard
deviation) and nodal levels using a semiparametric generalized
additive model (43) with restricted maximum likelihood as the
smoothing parameter:

Y ¼ b0 1 b1 3 group 1 f1 ðageÞ 1 f2 ðage; groupÞ
1 b2 3 mFD 1 ε

(1)

where Y denotes the measure of modular variability. The age
and age-by-group interaction effects were controlled for by
introducing two smooth functions (i.e., f1, f2) as nonparametric
terms. This allows for flexible assessment of the nonlinear
relationship without preemptively assigning a prior shape.
Mean framewise displacement (44) was also included as a
covariate to control for head motion. Multiple comparisons
were corrected for by applying the false discovery rate (FDR)
method (45). Cohen’s d values, representing the effect size of
the group comparisons, were computed from the t-statistic of
the group term. The generalized additive model was computed
using the mgcv package (https://cran.rproject.org/web/
packages/mgcv/index.html). To further decode the cognitive
implications of the brain nodes exhibiting ASD-related alter-
ations in connectome dynamics, we performed a functional
meta-analysis using the Neurosynth database (46)
(Supplement).

Meta-analysis. To assess the robustness of the observed
case-control differences in the mega-analysis, we also un-
dertook a harmonized meta-analysis. Briefly, for each site we
conducted the generalized additive model (equation 1) to
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Figure 1. Mega-analysis of case-control differences in module dynamics. (A) Schematic overview of brain module switching within a multilayer network
model. Each node not only connects to nodes in the same window but also connects to itself in the two temporally adjacent windows. Node colors denote
nodal module affiliations. Modular switching is determined by modular variability, which reflects the module dynamics. Node 1 shows a high modular variability,
while node 2 shows a low modular variability. (B) Mega-analysis of case-control differences in the mean value and the standard deviation of modular variability
at the global level. (C) Mega-analysis of case-control differences in module dynamics at the nodal level. The upper and middle panels show the group-level
modular variability maps for each population. The lower panel shows regions with significant case-control differences in modular variability, corrected for
multiple comparisons (false discovery rate–corrected p , .05, corresponding to uncorrected p , .004). (D) Cognitive terms associated with the regions
showing significant case-control differences. The red and blue word clouds represent cognitive terms associated with regions showing significantly higher and
lower module dynamics, respectively, in the autism spectrum disorder (ASD) group. Font size has been scaled to reflect the correlation value for each cognitive
term. (E) Prediction of individual Social Responsiveness Scale (SRS) scores based on modular variability maps using support vector regression. The scatterplot
displays the correlation between actual and predicted SRS scores. Each dot corresponds to one instance of leave-one-out cross-validation. The brain map
displays regional contribution to the prediction, which was defined as the frequency that each region was selected as a feature in the leave-one-out cross-
validation. HC, healthy control.
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examine site-specific group differences in modular dynamics
at both global and nodal levels. Then, we obtained the meta-
analytic Cohen’s d values of these measures using an
B

inverse variance-weighted random effect meta-analysis model
in the metafor package (version 3.0.2; https://cran.r-project.
org/web/packages/metafor/index.html).
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Prediction of Social Impairments Using
Connectome Dynamics

We further evaluated whether brain module dynamics were
predictive of individual social impairments observed in ASD. To
quantify the degree of social impairments, we looked at scores
on the Social Responsiveness Scale (SRS), which provides a
dimensional characterization of the severity of social impair-
ments related to ASD. We trained a support vector regression
model to estimate each participant’s SRS score based on the
whole-brain modular variability maps. Leave-one-out cross-
validation was used to estimate the accuracy of our pre-
dictions. In each leave-one-out cross-validation fold, we
included the feature selection, model learning, and testing.
Nodal contribution to the prediction was defined as the fre-
quency that each node was selected as a feature during the
leave-one-out cross-validation (Supplement). This analysis
was performed using the LIBSVM toolbox (47).

Association Between Alterations in Connectome
Dynamics and Gene Expression Profiles

Estimation of Gene Expression in Brain Nodes. We
used the genome expression data from 5 male postmortem
human brains from the Allen Human Brain Atlas dataset (48) to
identify genes associated with ASD-related alterations in
connectome dynamics. Gene expression levels from the left
hemisphere were used here, as right hemisphere data were
available from only 2 donors. The microarray data were pre-
processed using a state-of-the-art analysis pipeline (49) and
spatially matched with 222 brain nodes (Supplement). This
resulted in a 222 3 10,145 matrix, denoting the expression of
10,145 genes across 222 nodes.

Spatial Correlation With Gene Expression Profiles. Given
the high similarity of results obtained from the mega- and meta-
analyses in regard to ASD-related alterations in brain module
dynamics (see Results), we performed the connectome-
transcriptome association analysis based on the group differ-
ence map (i.e., Cohen’s d values) from the mega-analysis.
Specifically, we used a PLS regression to identify the
weighted linear combinations (i.e., components) of expression
patterns for all 10,145 genes, which were correlated with ASD-
related alterations in connectome dynamics. The statistical
significance of the variance explained by the PLS components
was tested using a permutation analysis (n = 10,000) in which
spatial autocorrelation was corrected for (50). For each PLS
component map, we calculated the spatial similarity between
the weighted gene expressions and Cohen’s d values in the
group difference map using Pearson’s correlation. The signifi-
cance of the correlation was tested again using a permutation
analysis (n = 10,000) in which spatial autocorrelation was cor-
rected for (50). Finally, the PLS weight of each gene was
transformed into a z score value by dividing the weight by the
standard deviation of the corresponding weights derived from
1000 instances of bootstrapping (resampling with replacement
of 222 nodes). We then ranked all genes according to their z
score weights to the PLS components.

Enrichment Analysis. To explore the functional signifi-
cance of the associated genes, we first conducted separate
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searches for Gene Ontology terms that were enriched at the
top (strong positive correlation) and bottom (strong negative
correlation) of the ranked gene list by employing the widely
used online tool GOrilla (http://cbl-gorilla.cs.technion.ac.il/)
(Supplement) (51). All three ontology classes—biological pro-
cess, cellular component, and molecular function—were
considered.

Next, we performed a gene set enrichment analysis (52)
on the whole gene list (i.e., the ordered set of 10,145 genes)
to assess whether ASD-related gene sets identified in pre-
vious studies were overrepresented in the most strongly
correlated genes identified in our ordered list. Specifically,
we considered 6 different classes of ASD-related gene sets
(Table S1), as follows: gene set 1, ASD-related genes from a
summary of multiple datasets (53); gene set 2, ASD risk
genes from a large-scale exome sequencing study (31); gene
set 3, ASD-associated common genetic variants from a
genome-wide association meta-analysis study (29); gene set
4, ASD-associated rare, de novo variants from a study
integrating copy number variants and sequencing data (30);
gene set 5, genes upregulated in the ASD cortex from a
postmortem genome-wide transcriptome study (32); and
gene set 6, genes downregulated in the ASD cortex from a
postmortem genome-wide transcriptome study (32). For the
purposes of comparison, we also included one gene set that
was associated with non–mental health diseases (i.e., gene
set 7) (53). For each gene set, we obtained an enrichment
score representing the level of enrichment. To correct for the
size of the gene set, we compared the enrichment score with
those estimated from permutation tests (n = 10,000) and
derived a normalized enrichment score (NES). The enrich-
ment analysis was performed using the clusterProfiler
package version 3.14.3 (https://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html) (54).

Power Estimation

We estimated the minimal effect size (i.e., Cohen’s d)
observable for case-control differences between 440 in-
dividuals with ASD and 499 HC subjects using G*Power,
version 3.1.9.4. At a significant threshold of 0.05 (two-tailed)
and a minimum desired power level of 0.8, we had the statis-
tical power to observe Cohen’s d greater than 0.18.

Validation Analysis

We validated our main findings by considering 8 potential
confounding factors, including head motion, window length,
multilayer model parameters (i.e., g and u), IQ, imaging sites,
age range, scanning states, and brain parcellations
(Supplement).
RESULTS

Demographic Characteristics

Table 1 summarizes the demographic and clinical information
of the participants. No significant difference in age was found
between the ASD and HC groups (p = .84). The ASD group
showed lower IQ scores (p = 4.1 3 1029) and higher SRS
scores than the HC group (p = 4.5 3 102133).

http://cbl-gorilla.cs.technion.ac.il/
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Table 1. Demographics and Clinical Characteristics of Participants

ASD (n = 440) HC (n = 499) p Value

Age, Years 5.3–34.5 (14.3 6 5.4) 5.9–34.1 (14.4 6 5.4) .84

FSIQ 71–149 (107.1 6 16.6) 73–148 (112.8 6 12.9) 4.1 3 1029

ADOS-2 Total (n = 208) 2–26 (11.7 6 4.2) NA

ADOS-2 Severity (n = 208) 1–10 (6.7 6 2.0) NA

ADOS-2 Social (n = 206) 1–20 (8.7 6 3.6) NA

ADOS-2 RRB (n = 209) 0–7 (3.0 6 1.6) NA

ADI-R Social (n = 322) 4–30 (19.3 6 5.4) NA

ADI-R Verbal (n = 322) 4–25 (15.6 6 4.4) NA

ADI-R RRB (n = 322) 0–12 (5.7 6 2.6) NA

SRS: ASD/HC (n = 220/253) 16–171 (90.5 6 28.7) 0–85 (19.8 6 13.5) 4.5 3 102133

Values are presented as range (mean 6 SD). Male participants were selected from 18 of the sites that contributed to the ABIDE I and ABIDE II
datasets using stringent quality control criteria. For each clinical measure, we considered only the module/version with the largest sample of
participants available. The p value was obtained using a two-sample two-tailed t test.

ABIDE, Autism Brain Imaging Data Exchange; ADI-R, Autism Diagnostic Interview–Revised; ADOS-2, Autism Diagnostic Observation Schedule,
Second Edition; ASD, autism spectrum disorder; FSIQ, Full Scale IQ; HC, healthy control; NA, not applicable; RRB, restricted and repetitive behavior;
SRS, Social Responsiveness Scale.
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Alterations of Module Dynamics in ASD
Connectomes

Mega-analysis. At the global level, no significant group
difference was found in brain network modularity (p = .32).
However, the ASD group showed a higher mean value
(Cohen’s d = 0.18, p = .007) and a lower standard deviation
(Cohen’s d =20.19, p = .004) in whole-brain modular variability
than the HC group (Figure 1B). This suggests that global brain
dynamics in individuals with ASD tends to be more unstable
and regionally undifferentiated compared with that in HC
subjects.

At the nodal level, for both the ASD and the HC groups, we
observed higher modular variability primarily in the bilateral
prefrontal regions and the medial temporal lobe and lower
variability mainly in the medial prefrontal and parietal regions,
angular gyrus, and visual cortex (Figure 1C, upper and middle
panels). This pattern is highly comparable to that shown in
previous studies in healthy brains (16,33). Compared with the
HC group, the ASD group showed higher modular variability
mainly in several DMN regions, including the medial prefrontal
cortex, posterior cingulate gyrus, and angular gyrus (Cohen’s
d range, 0.19–0.33), and lower variability primarily in the visual
cortex (Cohen’s d range, 20.24 to 20.19) (FDR-corrected p ,

.05) (Figure 1C, lower panel) (age and age-by-group interaction
effects are described in Figure S2 and Figure S3).

Using the NeuroSynth meta-analytic database (46), we
found that the regions showing higher modular dynamics in
ASD were mainly associated with social function and internally
oriented processes, while those showing lower modular dy-
namics were involved in visual-related tasks (Figure 1D).

Meta-analysis. At the global level, our harmonized meta-
analysis revealed that the ASD group showed a higher global
mean (Cohen’s d = 0.15, p = .01) and a lower standard devi-
ation (Cohen’s d = 20.23, p = .001) in whole-brain modular
variability compared with the HC group (Figure 2A, B). At the
nodal level, the case-control difference pattern was remarkably
similar to that derived from the mega-analysis (spatial simi-
larity: r = 0.96, p , .0001 after correcting for spatial
B

autocorrelation) (Figure 2C and Figure S4). The meta-analysis
also revealed significant group differences in DMN (Cohen’s
d range, 0.19–0.34) and visual regions (Cohen’s d range,20.34
to 20.17) (FDR-corrected p , .05) (Figure 2D).

Predicting the Severity of Social Impairments
Based on Brain Module Dynamics

Using individual modular dynamics patterns as the feature in
the support vector regression model, we found that brain dy-
namics was a significant predictor of SRS scores (r = 0.16,
permutation p = .002) (Figure 1E). Brain nodes making the
largest contribution to SRS score prediction were mainly
located in the medial prefrontal cortex and the visual cortex
(Figure 1E). These regions largely overlapped with regions
showing case-control differences in brain modular dynamics.

Association Between Alterations in Connectome
Dynamics and Gene Expression Profiles

PLS Regression Analysis. We assessed the spatial as-
sociation between alterations in ASD-related dynamics and
nodal gene expression profiles (Figure 3A). The weighted gene
expression pattern of the first PLS component accounted for
the greatest spatial variance (20.5%) (Figure 3B) in modular
dynamics in the case-control difference map (p = .05, cor-
rected for spatial autocorrelation). The first PLS component
score map was spatially correlated with the group difference
map (r = 0.45, p = .0043, corrected for spatial autocorrelation)
(Figure 3C, D).

Enrichment Analysis. We identified three biological pro-
cess terms significantly enriched at the top of the gene list: the
regulation of secretion by cell, the regulation of neurotrans-
mitter transport, and the regulation of secretion (FDR-cor-
rected p , .01) (Figure 3E). Interestingly, all three of these
terms were related to the regulation of transport. We did not
find any significant enrichment of Gene Ontology terms at the
bottom of the gene list. Moreover, no significant enrichment of
molecular function and cellular components was observed.
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 5
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Figure 2. Meta-analysis of case-control differences in module dynamics. (A) Forest plot of Cohen’s d effect sizes for case-control differences in the global
mean of modular variability. Each row shows the Cohen’s d effect size and the confidence intervals for each site. The meta-analysis results are displayed at the
bottom with the combined effect and the confidence interval plotted as a diamond. (B) Forest plot of Cohen’s d effect sizes for case-control differences in the
standard deviation (SD) of modular variability. (C) Spatial similarity between case-control difference maps obtained from the mega- and meta-analyses. Each
dot represents a brain node. The significance level of the spatial association was corrected for spatial autocorrelation (SA-corr) (50). (D) Meta-analysis of case-
control differences at the nodal level. Significance levels of case-control differences in modular variability have been corrected for multiple comparisons (false
discovery rate –corrected p , .05, corresponding to uncorrected p , .0056). Where applicable, samples 1 and 2 are indicated by 1 and 2, respectively,
following the site name. GU, Georgetown University; KKI, Kennedy Krieger Institute; LEUVEN, University of Leuven; NYU, NYU Langone Medical Center; OLIN,
Olin Institute of Living at Hartford Hospital; PITT, University of Pittsburgh; RE, random effect; SDSU, San Diego State University; STANFORD, Stanford
University; TCD, Trinity Center for Health Sciences; UCLA, University of California Los Angeles; UM, University of Michigan; USM, Utah School of Medicine;
YALE, Yale School of Medicine.
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Figure 3. Association between autism spectrum disorder–related alterations in module dynamics and gene expression profiles. (A) Gene expression profiles
across brain nodes. Each row denotes the gene expression for each gene at a given brain node. (B) Explained ratios for the first 15 components obtained from
the partial least squares (PLS) regression analysis. Each component denotes a weighted linear combination of the expressions of all genes. (C) Spatial patterns
showing the mega-analysis case-control differences in modular variability (unthresholded) and the first PLS component (PLS1) scores in the left hemisphere.
(D) Spatial association between case-control differences in modular variability and PLS1 scores. Each dot represents a brain node. The significance level of the
spatial association has been corrected for spatial autocorrelation (SA-corr) (50). (E) Significant enrichment of Gene Ontology terms associated with biological
processes was observed for top genes with high weights to the PLS1 component. Color denotes the q values for the significantly enriched Gene Ontology
terms. FDR, false discovery rate.
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We further conducted a gene set enrichment analysis to
examine whether 6 classes of previously reported ASD-related
genes were significantly enriched at the top or bottom of our
ordered gene list (Figure 4A). We found that ASD-related genes
from a summary of multiple databases (i.e., gene set 1) were
significantly enriched at the top of our gene list (NES = 1.27,
adjusted p = .035, FDR corrected, hereafter the same)
(Figure 4B). The ASD risk genes identified from a large-scale
exome sequencing study (i.e., gene set 2) exhibited a signifi-
cant enrichment at the bottom of our gene list (NES = 21.48,
adjusted p = .035) (Figure 4C). We also observed that ASD-
related common genetic variants (i.e., gene set 3) were
significantly enriched at the bottom of our gene list
(NES = 21.70, adjusted p = .028) (Figure 4D), while ASD-
related rare, de novo variants (i.e., gene set 4) exhibited only
marginally significant enrichment (NES = 21.39, adjusted p =
.069) at the bottom of our gene list (Figure 4E). Moreover,
genes upregulated and downregulated in postmortem ASD
cortex (i.e., gene sets 5 and 6) were significantly enriched at
the top and bottom of our gene list, respectively (upregulated:
NES = 1.41, adjusted p = .009; downregulated: NES = 21.67,
adjusted p = .002) (Figure 4F, G). As a control dataset, the gene
set comprising genes associated with non–mental health
B

diseases (i.e., gene set 7) was not significantly enriched at the
top or bottom of the gene list (NES = 20.99, adjusted p = .51)
(Figure 4H).

Validation Results

When assessing the potential influence of 8 confounding
factors, we found that ASD-related, significant alterations in
brain modular dynamics remained highly similar to our main
results (Table S2; Figures S5 and S6). This suggests that our
results were robust and not affected by methodological
variations.

DISCUSSION

Using harmonized mega- and meta-analyses, this study pro-
vides the first robust demonstration of ASD-related alterations
in brain modular dynamics. Our study reveals that these al-
terations occur primarily in the DMN and visual regions and are
associated with social impairments in patients and with the
expression profiles of genes enriched for the regulation of
neurotransmitter transport and secretion as well as with pre-
viously reported autism-related genes. Together, these find-
ings provide evidence for altered macroscopic connectome
iological Psychiatry - -, 2022; -:-–- www.sobp.org/journal 7
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Figure 4. Gene set enrichment analysis of genes associated with autism spectrum disorder (ASD)–related alterations in module dynamics. (A) Overview of
the gene set enrichment analysis. The solid line denotes the running enrichment score (ES) along the ordered gene list, which increases when a gene is
included in the gene set of interest and decreases when a gene is not included. The vertical lines in the middle display the locations at which the members of
the gene set appear in the ordered gene list. The shaded curve at the bottom denotes the value of the ranking metric (i.e., z value for first partial least squares
component weight of each gene) for the genes in the ordered gene list. The ES captures the degree to which the gene set is overrepresented at the top or
bottom of the ordered gene list, which is defined as the maximum deviation from zero of the running ES. Significance of the ES was estimated by a gene set–
based permutation (10,000 times). (B) Significant enrichment of ASD-related genes from a summary of multiple databases (53). (C) Significant enrichment of
ASD risk genes (31). (D) Significant enrichment of common genetic variants of ASD derived from a genome-wide association study (29). (E) Marginally sig-
nificant enrichment of ASD-related rare, de novo variants (30). (F) Significant enrichment of genes upregulated in postmortem ASD cortex (32). (G) Significant
enrichment of genes downregulated in postmortem ASD cortex (32). (H) Nonsignificant enrichment of the gene set associated with non–mental health diseases
(53). After the gene set enrichment analysis was performed for all gene sets, the ES for each gene set was normalized to the normalized enrichment score (NES)
to account for the gene set size, and multiple comparisons with the 7 gene sets were corrected for using the false discovery rate method. padjust, adjusted p.
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dynamics and illustrate its linkage with microscopic tran-
scriptional profiles, advancing our knowledge of the biological
mechanisms behind ASD.

Aberrant Configuration of Dynamic Modular
Architecture in ASD

Existing literature has reported altered static (i.e., time-
invariant) functional connectivity in the DMN (5–8) and visual
areas (55). Compared with the static-based methods, the
connectome dynamics approach used here is able to assess
the temporal switching among functional modules. These
time-varying features capture regional roles in dynamic inter-
module integration (16,56) and the capability of cognitive
flexibility (16,17). Specifically, we demonstrated that patients
with ASD exhibited higher levels of modular switching in
several DMN regions (in particular, the medial prefrontal cor-
tex), but lower modular switching in visual areas, suggesting
the aberrance of functional integration between these regions
and other network components. Thus, our findings of alter-
ations of ASD-related connectome dynamics provide novel
clues into the pathological mechanism behind ASD beyond the
static approach.

Based on themeta-analytic Neurosynth decoding, the higher
module dynamics in the DMN regions may relate to deficits of
cognitive functions, such as self-referential and mentalizing
processing (57–59). The lower module dynamics in the visual
8 Biological Psychiatry - -, 2022; -:-–- www.sobp.org/journal
areas may relate to the dysfunction of visual processing. Prior
studies have found that visual perception impairments
contribute to early social-emotional deficits (60) and have
cascading effects on learning and social development in ASD
(61). Thus, we posit that the altered module dynamics underlies
impaired social function in individuals with ASD. This specula-
tion was further supported by our analysis predicting individual
social impairments using ASD brain dynamics. However, owing
to the lack of cognitive data in the ABIDE database, the direct
association between the alterations in brain dynamics and the
cognition dysfunction warrants further investigation.

Transcriptional Profiling of Aberrant Brain Module
Dynamics

Leveraging postmortem brain-wide gene expression data from
the Allen Human Brain Atlas dataset (48), we found that ASD-
related alterations in brain dynamics were closely associated
with the transcriptional profiles of genes involved in the regu-
lation of neurotransmitter transport and secretion. Extensive
studies have indicated that aberrant neurotransmitter transport
is a significant feature of ASD, especially aberrancies in the
transport of the excitatory neurotransmitter glutamate and the
inhibitory neurotransmitter GABA (gamma-aminobutyric acid)
(62). This suggests that brain regions with abnormal dynamics
in ASD, e.g., the medial prefrontal and visual cortices, may
have failed to maintain balanced excitatory-inhibitory
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neurotransmitter transport. Such speculations are supported
by prior studies that have reported imbalanced excitatory-
inhibitory synaptic transmission in these regions (63–65).
Accordingly, our findings may provide support for the existing
excitation/inhibition imbalance theory in ASD (66,67) by
revealing a transport regulation–specific connectome-
transcriptome association.

We also demonstrated that previously reported autism-
related genes were significantly enriched among the genes
that we found to be most strongly correlated (both positively
and negatively) with alterations in modular dynamics, indi-
cating that different classes of genes contribute to the alter-
ations in module dynamics in ASD. Specifically, compared
with rare, de novo variants (gene set 4) (30), ASD-related
common genetic variants showed a more substantial influ-
ence on module dynamics, which was manifested as a sig-
nificant enrichment of the gene set. This finding is consistent
with a recent study regarding cortical volume and tran-
scriptome association in ASD (68) and could be due to
common variants explaining a larger proportion of heritable
variance in ASD compared with rare, de novo variants (69).
Moreover, we found that genes upregulated and down-
regulated in postmortem ASD cortex were overrepresented at
either the top and bottom, respectively, of our gene list. As
the top and bottom weighted genes in the ranked list showed
different correlations (i.e., positive and negative) with ASD-
related alterations in module dynamics, we speculate that
these two categories of dysregulated genes in ASD are likely
to affect brain network dynamics in different ways. Several
previous studies have also shown the association between
abnormal brain morphology (e.g., cortical thickness and vol-
ume) and the downregulated genes in ASD, but the same
association was not found for the upregulated genes (68,70).
Combining these findings, the implication is that different
imaging phenotypes in ASD may show common and specific
genetic factors. Notably, we did not find any significant
overrepresentation of genes in the gene set associated with
non–mental health diseases (gene set 7) (53), suggesting that
the genes identified as being strongly correlated were specific
to mental health disorders.
Limitations and Future Work

First, only male participants were included in this study, given
the high prevalence of ASD in males and the small sample of
female participants in the ABIDE database. Whether the find-
ings can be generalized to the female population still needs
further investigation. Second, we did not exclude individuals
with ASD receiving medication, given the limited medication
information available from the database. Whether and how
medication affects the alterations in module dynamics remains
for further exploration. Third, most of our results showed
Cohen’s d effect sizes greater than the power estimation level
(i.e., 0.18). Nonetheless, the effect sizes are generally small,
which could be due to sample heterogeneity (e.g., ages, sub-
types, stages, and medications) and site-related factors (e.g.,
different scanners and imaging protocols). Fourth, we mainly
focused on case-control differences, but age and group-by-
age interaction effects were also observed here. As these
age and age-by-group interaction effects varied across several
B

validation strategies, these results should be interpreted with
caution. Fifth, gene expression data used here were derived
from 5 healthy brains. It will therefore be promising to explore
the connectome-transcriptome association using ASD gene
expression data when the relevant data become available.
Finally, as a psychiatric disorder, ASD often features high co-
morbidity and may exhibit alterations in brain function and
genetic factors that are also present in other brain disorders
(71,72). Revealing ASD-specific genes and dynamic con-
nectome alterations will be important for understanding the
biological basis of this disorder.
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