
Chinese Physics B
     

RAPID COMMUNICATION

Discontinuous and continuous transitions of
collective behaviors in living systems*

To cite this article: Xu Li et al 2021 Chinese Phys. B 30 128703

 

View the article online for updates and enhancements.

You may also like
Active Brownian particles with velocity-
alignment and active fluctuations
R Großmann, L Schimansky-Geier and P
Romanczuk

-

The world beyond physics: How big is it?
Sauro Succi

-

Active colloids
I S Aranson

-

This content was downloaded from IP address 210.31.76.42 on 13/04/2022 at 14:50

https://doi.org/10.1088/1674-1056/ac3c3f
https://iopscience.iop.org/article/10.1088/1367-2630/14/7/073033
https://iopscience.iop.org/article/10.1088/1367-2630/14/7/073033
https://iopscience.iop.org/article/10.1209/0295-5075/ac52f7
https://iopscience.iop.org/article/10.3367/UFNe.0183.201301e.0087


Chin. Phys. B Vol. 30, No. 12 (2021) 128703

RAPID COMMUNICATION

Discontinuous and continuous transitions of collective behaviors
in living systems∗

Xu Li(李旭)1,2,†, Tingting Xue(薛婷婷)1,†, Yu Sun(孙宇)2, Jingfang Fan(樊京芳)1,2, Hui Li(李辉)1,2,
Maoxin Liu(刘卯鑫)3, Zhangang Han(韩战钢)1, Zengru Di(狄增如)1,2, and Xiaosong Chen(陈晓松)1,2,‡

1School of Systems Science, Beijing Normal University, Beijing 100878, China
2Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100878, China

3School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

(Received 16 November 2021; revised manuscript received 22 November 2021; accepted manuscript online 23 November 2021)

Living systems are full of astonishing diversity and complexity of life. Despite differences in the length scales and
cognitive abilities of these systems, collective motion of large groups of individuals can emerge. It is of great importance to
seek for the fundamental principles of collective motion, such as phase transitions and their natures. Via an eigen microstate
approach, we have found a discontinuous transition of density and a continuous transition of velocity in the Vicsek models
of collective motion, which are identified by the finite-size scaling form of order-parameter. At strong noise, living systems
behave like gas. With the decrease of noise, the interactions between the particles of a living system become stronger and
make them come closer. The living system experiences then a discontinuous gas–liquid like transition of density. The even
stronger interactions at smaller noise make the velocity directions of the particles become ordered and there is a continuous
phase transition of collective motion in addition.
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1. Introduction
Collective behaviors are the most important proper-

ties of systems consisting of many individuals. Collective
motion of large groups of individuals is a truly fascinat-
ing collective behavior in living systems and was observed
in starlings,[1–3] bacterial communities,[4,5] ant colonies,[6,7]

locusts,[8] midges,[9,10] sheep,[11] etc. While detailed case
studies are preferred in general by biologists,[8,12,13] physicists
usually seek for universal features behind seemingly diverse
observations and the models sufficient to capture the funda-
mental features[14] to find the fundamental principles of col-
lective motion.

It is the mission of statistical physics to connect the
microscopic properties of individual with the macroscopic
behavior using the probability theory and statistics.[15–17]

In addition, the studies of phase transitions and critical
phenomena[18] need to identify order-parameters in advance.

As a prototype model of collective motion in living sys-
tems, the standard Viscek model (SVM)[19] was introduced. In
the original work of SVM, it was claimed that phase transition
of collective motion is continuous. But this was challenged
later by Chaté et al.[20,21] They showed that the continuous na-
ture observed is actually due to finite-size effects and the phase
transition is discontinuous. Since the precise order-parameter
of collective motion is unknown and no systematic analysis of
finite-size scaling has been made, these results about the na-

ture of phase transitions until now are not conclusive.
In an eigen microstate approach developed recently,[22,23]

collective behaviors of systems are indicated by the conden-
sation of eigen microstate in statistical ensemble,[24] which
is analogous to the Bose–Einstein condensation of Bose
gases.[25] The approach has been applied successfully to study
the phase transitions of Ising models.[22,23] Here we use this
approach to investigate collective behaviors of living systems
and identify order-parameters and the nature of phase transi-
tions precisely.

2. Eigen microstates and phase transitions
2.1. Microstates

For a particle i of a living system, its state is characterized
by velocity 𝑣i(t) and position 𝑥i(t). It is more relevant to intro-
duce neighborhood density of i as ni(t) = Ni(t)/(2r)2, where
r is the interaction distance and Ni(t) is the number of the par-
ticles around i within a square with side length 2r. From states
of N components at t = 1,2, ...,M, we can obtain the average
velocity and neighborhood density as

v =

√
1

MN

M

∑
t=1

N

∑
i=1
|𝑣i(t)|2, (1)

n =
1

MN

M

∑
t=1

N

∑
i=1

ni(t). (2)
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We describe the state of particle i with v̄i,x(t) = vi,x(t)/v,
v̄i,y(t) = vi,y(t)/v, and δni(t) = (ni(t)−n)/n. Using the states
of N components, we can define the microstate of the living
system as

𝑆(t) =



𝑠1(t)

𝑠2(t)

...

𝑠N(t)


, (3)

where

si(t) =


v̄i,x(t)

v̄i,y(t)

δni(t)

 . (4)

2.2. Eigen microstates[22]

Using M microstates of the living system, a statistical
ensemble[24] can be composed and characterized by an NT×M
matrix 𝐴 with NT = 3N and elements[22]

Ait = si(t)/
√

C0, (5)

where C0 = ∑
M
t=1 ∑

NT
i=1 s2

i (t).
The correlations between microstates and states of

particles[26] can be presented respectively by an M×M ma-
trix and an NT×NT matrix as

𝐶 = 𝐴T ·𝐴, (6)

𝐾 = 𝐴 ·𝐴T. (7)

Using eigenvectors of 𝐶 and 𝐾, we can compose two unitary
matrices

𝑉 = [𝑣1𝑣2 . . .𝑣M], 𝑈 = [𝑢1𝑢2 . . .𝑢NT ]. (8)

According to the singular value decomposition
(SVD),[27] the ensemble matrix 𝐴 can be factorized as

𝐴=𝑈 ·Σ ·𝑉 T, (9)

where Σ is an NT×M diagonal matrix with elements

ΣIJ =

{
σI , I = J ≤ r,
0, otherwise,

(10)

where r = min(M,NT).
We can rewrite the ensemble matrix 𝐴 as

𝐴=
r

∑
I=1

σI𝑢I⊗𝑣I , (11)

where ∑
r
I=1 σ2

I = 1. σI is the probability amplitude. W E
I = σ2

I
is the probability of the eigen microstate 𝑢I , whose evolution
is described by 𝑣I . For disorder living systems, no eigen mi-
crostate is dominant so that all probability amplitudes are of
the same order. At the limits M→∞ and N→∞, all probabil-
ity amplitudes σI → 0.

2.3. Phase emergence

If a probability amplitude σI → no-zero at the limits
M→ ∞ and N → ∞, there is a condensation of the eigen mi-
crostate 𝑢I in the statistical ensemble. This condensation of
eigen microstate is analogous to the Bose–Einstein condensa-
tion of Bose gases,[25] in which a finite part of total bosons
simultaneously occupy the ground state. This condensation of
eigen microstate implies an emergent phase described by 𝑢I .
More than one emergent phase can exist in a system.

2.4. Phase transition and finite-size scaling

With changes of external conditions or internal conditions
of living systems, a probability amplitude σI may increase
from zero to finite. Now there is a phase transition with order-
parameter described by σI and new phase characterized by 𝑢I .

With external conditions characterized by a parameter η ,
we have η = ηc at the phase transition point. The distance
from the phase transition point is h = (η − ηc)/ηc. In the
asymptotic region with |h| � 1, we proposed a finite-size scal-
ing form of σI as[22]

σI(η ,L) = L−β/ν fI(hL1/ν), (12)

where L is the system size, β is the critical exponent of order
parameter, and ν is the critical exponent of correlation length.

For β > 0, we have σI(η ,∞) = 0 at η > ηc and
σI(η ,∞) ∝ (ηc−η)β for η < ηc. This is a continuous phase
transition.

When β = 0, there is a jump from σI(η ,∞) = 0 at η > ηc

to σI(ηc,L) = fI(0) 6= 0 at ηc. This indicates a discontinuous
phase transition.

2.5. Global indexes of eigen microstate

To get an overview of 𝑢I , we define the collective motion
index as

Φ
I =

√√√√∣∣∣∣∣ 1√
N

N

∑
i=1

vI
i,x

∣∣∣∣∣
2

+

∣∣∣∣∣ 1√
N

N

∑
i=1

vI
i,y

∣∣∣∣∣
2

, (13)

where (vI
i,x,v

I
i,y) are the velocity components. The density fluc-

tuation index of 𝑢I is defined as

δnI =
1√
N

N

∑
i=1

δnI
i , (14)

where δnI
i are the density fluctuation components.

2.6. Spatial distribution of eigen microstate

For an eigen microstate 𝑢I , states of all particles are
given. We display the state of a particle i at the corresponding
average position 𝑅i =

1
M ∑

M
t=1 𝑟i(t). We will show the spatial

distributions of velocity and neighborhood density fluctuation
separately.

We have applied the eigen microstate approach (EMA) to
study successfully the ferromagnetic phase transitions of Ising
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models in equilibrium.[22] Here the EMA is used to investigate
the emergent phases and their phase transitions of nonequilib-
rium living systems.

3. Results and discussion
3.1. SVM[19]

In a two-dimensional SVM, there are N = L× L point-
wise particles labeled as 1,2, ...,N and placed randomly on a
two-dimensional domain with size L and periodic boundary
conditions. They move synchronously at discrete time steps
by a fixed distance v0∆t, where v0 is the velocity defined as
the length of displacement per time step ∆t = 1. Each particle
i is endowed with an angle θi that determines the direction of
the movement during the next time step, and its update is deter-
mined by the orientations of its neighbors (defined as particles
within a unit circle centered around particle i, including itself).
The influence of the neighbors is through an average angle

〈θi(t)〉r = Θ

[
∑

j: di j<1
𝑣 j(t)

]
, (15)

where Θ[𝑣] represents the angle of vector 𝑣 and di j is the dis-
tance between particles i and j. The evolution is

𝑥i(t +∆t) = 𝑥i(t)+𝑣i(t +∆t)∆t, (16)

θi(t +∆t) = 〈θi(t)〉r +ηξi(t). (17)

Here the key ingredient is the competition between the
tendency towards local alignment and the angular noise ξi(t)
that might come from external perturbations and/or from un-
certainties in individual’s perception, chosen from a uniform
distribution within the interval [−1/2,1/2]. The amplitude of
noise η has a maximum value ηmax = 2π . In the absence of
noise with η = 0, all particles tend to align perfectly.

For SVM, v = v0, v̄i,x = cosθi, and v̄i,y = sinθi. Our sim-
ulations are started with all particles distributed randomly in
the domain. To overcome the dependence on the initial con-
ditions, the first 2×105 microstates are neglected. The subse-
quent microstates are chosen at an interval of 40 steps to keep
independence. We take M = 2×104 microstates to get an en-

semble matrix 𝐴. Its eigenvalues and eigen microstates can be
calculated afterwards.

The probabilities of the eigen microstates are presented
in Fig. 1. Under strong noises, no eigen microstate is dom-
inant and the system is in disorder. With the decrease of η ,
σ1 becomes finite and a phase 𝑢1 emerges at first. Further,
two degenerate eigen microstates 𝑢2 and 𝑢3 appear simulta-
neously.
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0
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W
E 1

L=16
L=32
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(c) L=16
L=32
L=64

(d)

Fig. 1. Probabilities W E
I of eigen microstates in SVM with ρ = 2,v0 = 0.5.

(a) Different probabilities at L = 32. (b) W E
1 at different sizes. (c) W E

2 at
different sizes. (d) W E

3 at different sizes. The phase transition point of 𝑢1 is
indicated by the black arrow and that of 𝑢2,3 by the red arrow.

To identify the phase transition point and type of phase
transition, we investigate the size dependence of W E

I (η ,L).
According to Eq. (12), we have

lnW E
I (η ,L) =−2β/ν lnL+2ln fI(hL1/ν). (18)

There is a linear dependence of lnW E
I on lnL at h = 0.

This can be used to determine the transition point and critical
exponent ratio β/ν at the same time.

It has been manifested in Fig. 2(a) that W E
1 has a jump at

η1c = 3.95, which indicates a discontinuous phase transition
of 𝑢1. In Figs. 2(b) and 2(c), a continuous phase transition of
𝑢2 and 𝑢3 at η2c = 3.69 is identified. It has the ratio of critical
exponent β/ν = 0.94.

24 25 26 27 24 25 26 27 24 25 26 27

L

0.03

0.04

η=3.85 η=3.95 η=4.05(a)

L

η=3.55 η=3.69 η=3.80

(b)

L

10-4

10-3

10-4

10-3

η=3.55 η=3.69 η=3.80

(c)

W
E 1

W
E 2

W
E 3

Fig. 2. Log–log plot of W E
I versus L around transition points. (a) W E

1 with η1c = 3.95 and β1/ν1 =−0.0000(5). (b) W E
2 with η2c = 3.69 and β2/ν2 = 0.94(1).

(c) W E
3 with η3c = 3.69 and β3/ν3 = 0.94(2).
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To characterize the physical character of the phase transi-
tions above, we calculate the collective motion index and den-
sity fluctuation index of eigen microstate and present them in
Fig. 3. In the eigen microstates, velocity and density are cor-
related. This is similar to the magnetic lattice gas,[28] where
the orientation and density of the particle are correlated.

0

0.2

0.4

0.6

0.8

1.0
Φ Φ

Φδn

δn
δn

(a) (b)

0 2
η η

4 6 0 2 4 6

Fig. 3. Collective motion index Φ I and density fluctuation index δnI of
SVM with size L = 64. (a) I = 1. (b) I = 2,3.

At η1c, 𝑢1 has zero collective motion index Φ and
nonzero density fluctuation index δn. Therefore, 𝑢1 has a dis-
continuous transition of density. At η2c, both 𝑢2 and 𝑢3 have
nonzero Φ and zero δn. Here there is a continuous transition
of velocity.

The spatial distributions of eigen microstates are shown in
Figs. 4 and 5 for 𝑢1 and 𝑢2, respectively. In Fig. 6, the veloci-
ties and density fluctuations of eigen microstates 𝑢3 are shown
for different noises. The velocity direction of 𝑢3 is orthogonal
to that of 𝑢2.
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Fig. 4. Spatial distributions of velocity (a), (c), (e) and neighborhood den-
sity fluctuation (b), (d), (f) for 𝑢1 under noises η = 6,η1c = 3.95, and 0.25
respectively.
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Fig. 5. Spatial distribution of velocity (a), (c), (e) and neighborhood den-
sity fluctuation (b), (d), (f) for 𝑢2 under noises η = 6,η2c = 3.69, and 0.25
respectively.
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Fig. 6. Spatial distribution of velocity (a), (b), (c) and neighborhood density
fluctuation (d), (e), (f) for 𝑢3 of SVM under noises η = 6, η3c = 3.69 and
0.25. The velocity direction of 𝑢3 is orthogonal to that of 𝑢2.

To understand the peak of W E
1 in Fig. 1, we study the

noise dependence of n in Fig. 7. With the decrease of noise,
n increases at first. This is in accord with the condensation of
𝑢1. Afterwards there is a decrease of n. The peak becomes
more prominent with the increase of L. These phenomena
were found also in Ref. [29].
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Fig. 7. Average particle density n as a function of noise.

To investigate the density dependence of the phase transi-
tions, we study also the SVM at densities ρ = 1,3 in addition.
There are also discontinuous phase transitions of density at
first and then continuous phase transitions of velocity in these
systems. With the increase of density, the discontinuous tran-
sition of density appears at larger noise. We have obtained
η1c = 3.18 at ρ = 1, η1c = 3.95 at ρ = 2, and η1c = 4.3 at

ρ = 3. As shown in Figs. 2, 9, and 10, the jump of order-
parameter decreases with increasing density.

Correspondingly, the continuous transition points η2c,3c

increase with increasing density. We get η2c,3c = 3.06 at ρ = 1,
η2c,3c = 3.65 at ρ = 2, and η2c,3c = 4.0 at ρ = 3. The same
ratio of critical exponent β/ν has been obtained for the dif-
ferent continuous phase transitions, which belong to the same
universality class.
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Fig. 8. Probabilities of the first four eigen microstates for SVM with L = 32
and densities (a) ρ = 1, (b) ρ = 3 (b). The phase transition point of 𝑢1 is
indicated by the black arrow and that of 𝑢2,3 by the red arrow.
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Fig. 9. Log–log plot of W E
I versus L for SVM with ρ = 1. (a) W E

1 with η1c = 3.18 and β1/ν1 =−0.0001(7). (b) W E
2 with η2c = 3.06 and β2/ν2 = 0.94(3).

(c) W E
3 with η3c = 3.06 and β3/ν3 = 0.93(9).
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Fig. 10. Log–log plot of W E
I versus L for SVM with ρ = 3. (a) W E

1 with η1c = 4.3 and β1/ν1 = 0.0001(7). (b) W E
2 with η2c = 4.01 and β2/ν2 = 0.94(3).

(c) W E
3 with η3c = 4.01 and β3/ν3 = 0.94(1).
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Fig. 11. Collective motion Φ I and density fluctuation δnI of SVM
with L = 32 and ρ = 1.

Fig. 12. Collective motion Φ I and density fluctuation δnI of SVM
with L = 32 and ρ = 3.
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To explore the generality of the phase transitions found
in SVM, we study the hierarchical Vicsek model (HVM),[30]

which is a generalized version of SVM.

3.2. HVM

In the HVM, all particles are ordered by their hierarchical
rank j with j = 1 being the highest and j = N the lowest. For
particle i, the influence of a lower-ranked particle j ≤ i is re-
duced by a factor α < 1. Instead of Eq. (10), the average angle
here is

〈θi(t)〉r = Θ

[
∑

di j<1, j≤i
𝑣 j(t)+α ∑

di j<1, j>i
𝑣 j(t)

]
. (19)

SVM is recovered by α = 1.
We have studied the HVMs at α = 1/9,1/36. In Fig. 13,

the probabilities of the first four eigen microstates are pre-
sented for α = 1/9 in (a) and α = 1/36 in (b). Their tran-
sition points are determined in Figs. 14 and 15 and indicated
by arrows. With the decrease of α , the peaks of W E

1 and W E
2,3

increase.
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Fig. 13. Probabilities of HVM with L = 32, ρ = 2 and hierarchical factors:
(a) α = 1/9, (b) α = 1/36. The transition points are indicated by arrows.
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I versus L for the HVM with α = 1/9. (a) W E

1 with η1c = 3.54 and β1/ν1 = −0.0000(1). (b) W E
2 with η2c = 3.17 and

β2/ν2 = 0.94(4). (c) W E
3 with η3c = 3.17 and β3/ν3 = 0.93(8).
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Fig. 15. Log–log plot of W E
I versus L for the HVM with α = 1/36. (a) W E

1 with η1c = 3.23 and β1/ν1 = −0.0000(3). (b) W E
2 with η2c = 2.3 and

β2/ν2 = 0.94(2). (c) W E
3 with η3c = 2.3 and β3/ν3 = 0.94(1).

Because of the hierarchical rank in HVM, the discon-
tinuous phase transition of 𝑢1 is delayed by the hierarchi-
cal factor α so that η1c = 3.95 for α = 1, η1c = 3.54 for
α = 1/9, and η1c = 3.23 for α = 1/36. Correspondingly,
the jump at the discontinuous transition of density increases as
W E

1 (η1c,L) = 0.035 at α = 1, W E
1 (η1c,L) = 0.043 at α = 1/9,

and W E
1 (η1c,L) = 0.060 at α = 1/36.

The continuous phase transitions of HVM are also de-
layed so that η2c,3c = 3.65 at α = 1, η2c,3c = 3.17 at α = 1/9,
and η2c,3c = 2.3 at α = 1/36. The ratios β/ν at different α

are the same. So the continuous phase transitions of SVM and

HVM belong to the same universality class. We summarize
the results obtained above in Table 1.

Table 1. Summary of transition points and ratios of critical exponents.

η1c β1/ν1 η2c β2/ν2 β3/ν3

SVM
ρ = 1 3.18 −0.0001(7) 3.06 0.94(3) 0.93(9)
ρ = 2 3.95 0.0000(5) 3.65 0.94(1) 0.94(2)
ρ = 3 4.30 0.0001(7) 4.01 0.94(3) 0.94(1)
HVM

(ρ = 2)
α = 1/9 3.54 −0.0000(1) 3.17 0.94(4) 0.93(8)
α = 1/36 3.23 −0.0000(3) 2.30 0.94(2) 0.94(1)
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Our studies above show that particles in the living sys-
tems with strong noise have random positions and velocities.
With the decrease of noise, the interactions between the parti-
cles make them get closer and the average density n̄ becomes
larger, as shown in Fig. 7. These interactions result in a gas-
liquid like transition of density, which is discontinuous. With
further decrease of noise, particles stay further closer to each
other and the average density n̄ becomes larger. The even
stronger interactions between particles make the directions of
velocity become ordered and there is a phase transition of col-
lective motion, which is continuous.

4. Conclusions

We propose a method for investigating phase emergence
and transitions in living systems under the framework of eigen
microstate. From the velocity and position sequences of parti-
cles in a living system, we define a normalized ensemble ma-
trix 𝐴 with columns and rows corresponding to microstates
and time sequences of the particles. 𝐴 can be decomposed
as the sum of eigen microstate 𝑢I multiplied by its time se-
quence 𝑣I and eigen value σI , where ∑I σ2

I = 1. A finite σI

in the thermodynamic limit reveals the emergence of 𝑢I . Near
transition point h = 0, σI follows a finite-size scaling form
σI(h,L) = L−β/ν fI(hL1/ν), with β > 0 and β = 0 for contin-
uous and discontinuous phase transitions, respectively.

The phase emergence and transitions of both SVM[19] and
HVM[30] have been investigated. With the decrease of noise,
we find at first phase emergence of density with β = 0. So the
corresponding phase transitions are discontinuous. At even
smaller noises, there is the phase emergence of velocity with
β/ν = 0.94 and the phase transitions are continuous and be-
long to the same universality class.

Our results demonstrate that the eigen microstate ap-
proach works for nonequilibrium systems. Our approach can
be applied not only to living systems but also to other complex
systems, such as climate systems,[23,31] ecosystems,[32] et al.
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