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Multi-unmanned aerial vehicle swarm
formation control using hybrid strategy
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Abstract
This study proposes a novel hybrid strategy for formation control of a swarm of multiple unmanned aerial vehicles (UAVs). To enhance the fitness function of

the formation, this research offers a three-dimensional formation control for a swarm using particle swarm optimization (PSO) with Cauchy mutant (CM)

operators. We use CM operators to enhance the PSO algorithm by examining the varying fitness levels of the local and global optimal solutions for UAV for-

mation control. We establish the terrain and the fixed-wing UAV model. Furthermore, it also models different control parameters of the UAV as well. The

enhanced hybrid algorithm not only quickens the convergence rate but also improves the solution optimality. Lastly, we carry out the simulations for the

multi-UAV swarm under terrain and radar threats and the simulation results prove that the hybrid method is effective and gives better fitness function.
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Introduction

The unmanned aerial vehicle (UAV) is a plane that does not

have a person on board. UAV has extensive applications for

both civilian and military missions, for instance, product

deliveries, search and rescue, surveillance, and commercial

purposes (Shakhatreh et al., 2019). As opposed to a single

UAV, a multi-UAV swarm has distinct benefits of better effi-

ciency, lower cost, and bigger coverage than a single vehicle.
Multi-UAV formation control has drawn the significant

interest of the academic and scientific community (Chen

et al., 2014b). In earlier studies, scientists have modeled the

path planning for a multi-UAV as an optimization problem.

These models intend to find the most optimal route from ori-

gin to target under different constraints and circumstances.

The objective of these models is to achieve the least flight

route, the least flight time, collision avoidance, obstacle

avoidance, and handling communication delays, and so forth

(Cetin and Yilmaz, 2016; Duan and Shen, 2017; Duan et al.,

2016). Optimizing the path planning is crucial in enhancing

the autonomy and intelligence of unmanned aerial systems

(Jabbarpour et al., 2014).
In recent years, researchers have presented different tech-

niques for the path planning of autonomous multi-UAV for-

mations. Algorithms based on graphs like Voronoi diagram

(Pehlivanoglu, 2012), probabilistic roadmap technique

(Marble and Bekris, 2013), rapidly exploring random trees

method (Kothari and Postlethwaite, 2013), are some of the

simple methods for path planning. However, these algorithms

rarely consider UAV dynamic and environmental constraints

and therefore are not reliable for real-world scenarios. Reza

Olfati-Saber (2006) presented one of the more effective algo-

rithms. He proposed a theoretic outline for the design and

analysis of the distributed flocking algorithm for the multiple

UAV formation. Another efficient technique for path plan-

ning is an algorithm based on the potential field. Some exam-

ples are interfered fluid dynamical system technique (Yao

et al., 2016) and artificial potential field method (Chen et al.,

2014a; Sun et al., 2017).
To create a flightworthy route, such techniques must form

global coordination amongst the attractive and repulsive

field. Consequently, the algorithm can easily fall into the local

optimum, and sometimes they are not able to generate a

viable path when the obstacles or target is near. With the

progress in swarm intelligence, the bio-inspired algorithms

have made much progress (Duan and Luo, 2015; Rajput and

Kumari, 2017). These algorithms can find the best result more

efficiently and robustly. Many scientists use these algorithms

for the path planning multi-UAV formations. The most fre-

quently used bio-inspired algorithms are the artificial bee col-

ony (ABC) method (Yaghoobi and Esmaeili, 2017), the ant

colony optimization (ACO) technique (Stodola and Mazal,

2016), the genetic algorithm (GA) method (Roberge et al.,

2018) and particle swarm optimization (PSO) method (Das

et al., 2016; Xia et al., 2019).
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The two critical factors affecting the path planning are con-
vergence speed and solution optimality. For real-world appli-
cations, researchers always prefer the routes with quicker
convergence speed and the most optimal outcome. Though
some swarm algorithms have good performance, the solution

optimality and convergence speed are not feasible enough for
the real-world flying applications. Most existing research focus
on the path planning of a single UAV, which may not be good
enough for a swarm of UAVs.

Swarm intelligence has the advantage of simple implemen-
tation and can achieve the best global result. Researchers use it
for multi-UAV formation control and further optimization
problems. In addition to the applications in multi-UAV for-
mation control, several academics have also concentrated on
the theoretical studies and enhancements in swarm intelligence.
Researchers have carefully examined the aspects influencing
the outcomes of PSO and concluded that the four key factors
in enhancing the effectiveness of PSO are topology structure,
parameter selection, hybrid methods, and swarm initialization.

One main issue with the traditional PSO is that it could easily
fall into the local optimum in many optimization problems.
Several researchers have tried to resolve this issue. One study
(Tian and Shi, 2018) added a mutation mechanism and chaotic
maps into a classic PSO to avoid falling into local optimum and
premature solutions. With the help of prior research, quicker con-
vergence and more optimal solutions are the primary drivers of
this research. Hence, we propose a new hybrid algorithm based on
PSO and Cauchy mutant (CM) operators. The CM operators
ensure the best solution in less time than a standard PSO algo-
rithm. Cauchy Landmark operators reduce the possibility of
immature convergence by dealing with each ant separately. All dis-
tinct ants will progressively reach for the global optimal solution.

The major offerings of this study are as follows. This
research introduces a novel hybrid technique not present in the

existing literature by combining the classic PSO with the CM
Operators. It increases the complexity of the algorithm but also
enhances the fitness. This study implements the designed
hybrid algorithm effectively for multi-UAV swarm formation
under the radar, mountainous terrain, and obstacle avoidance
parameters. Finally, the fitness of the multi-UAV formation is
evaluated in detail and the results are better than similar tech-
niques, like the one described by Zhou et al. (2016).

The divisions of this study are: Section 2 designs the model
for flying space and the mountainous terrain. It also deals
with the various parameters including radar and collision cost.
Section 3 presents the preliminaries of UAV Formation with
communication delay and discusses the communication graph
concept of UAVs. Section 4 presents the fixed-UAV model
and the leader-follower formation model. Section 5 discusses
the classic PSO algorithm and its constraints. It also deals
with Cauchy mutant operators and presents the pseudo-code
of the proposed algorithm. Section 6 offers different

simulation scenarios and their results. Lastly, Section 7 con-
cludes the entire research and introduces some future research

ideas.

Problem formulation

Some vital aspects such as the atmosphere, UAV protection,
and the cost of each path play a significant role in the path
planning of each UAV in the formation. Overall, the mission
area primarily comprises the territory, radars, and obstacles.
The mission goal should take into account all the essential
ecological features. It should also assess how these features
affect the formation. Afterwards, this paper models the path
planning as an optimization problem and solves it using the
suggested hybrid algorithm. This section now introduces the
environmental parameters and mission objective below.

Flying range

The objective is to discover the best route to the target under
difficult terrain and environmental parameters. x, y, z repre-
sent the coordinates of a point in the three-dimensional (3D)
atmosphere. The flying range of the mission area is rewritten
as (Huang and Fei, 2018)

x, y, zð Þ xmin ł x ł xmax, ymin ł y ł ymax, zmin ł z ł zmaxj jf g ð1Þ

where xmin, xmax, ymin, ymax, zmin, zmax represent the flying con-
straints correspondingly.

Terrain model

A frequent function of terrain models is to create a datum,
peak, and plateau terrain, which are given below

Z1 x, yð Þ= sin y+ að Þ+ b: sin xð Þ+ c: cos d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p� �
+ e: cos xð Þ+ f : sin f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p� �
+ g: cos yð Þ

Z2 x, yð Þ=
Xk =N

k = 1
hk exp �

x� x0k

xsk

� �2

� y� y0k

ysk

� �2
" #

+Z0

Z x, yð Þ= max Z1,Z2ð Þ

8>>>>><
>>>>>:

ð2Þ

In the datum terrain function Z1, x, yð Þ are the Cartesian
coordinates, and a, b, c, d, e, f , gð Þ are constant numbers. The

constants vary according to changes in height.
In the peak terrain function Z2, x0k , y0kð Þ is the center of

peak k, hk is the height of the kth peak. xsk , yskð Þ is the drop
in x, yð Þ coordinates of the kth peak, Z0 is the initial height,
and N is the total amount of peaks.

The last plateau terrain expression Z is a maximum value
of Z1 and Z2.

Objective function design

Finding optimal swarm paths is a complex multi-faceted
problem. Taking the distance, obstacle avoidance, and terrain
and radar parameters into account, the evaluation function
for a swarm is as follows

f = fL + fT + fR + fC + fH ð3Þ
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whereas fL represents the route length cost, fT represents the
mountainous environment cost. While fR is the radar threat

cost, fC is the collision cost and fH is the altitude changing
cost.

(1) Minimal flying path length cost

UAV path planning must take into consideration the finite

quantity of fuel. Therefore, the path must be as short as pos-
sible. Supposing that a whole route consists of n legs, the min-
imal flying path length cost is

fL =
Xn

k = 1
lk ð4Þ

where lk denotes the length path leg.

(2) Mountain terrain cost

The space that separates the UAVs and the mountains deter-
mine the terrain cost. The nearer the UAVs are to the moun-
tain, the higher the mountain terrain cost will be. The
mountain terrain cost is

fT =

K

avgR
, path not through the mountains

e, path through the mountains

8<
: ð5Þ

avgR=

Pn
k = 1 rk

n
ð6Þ

where K is a number that relates to the real flying range, e is
the penalty constant, n is total legs, rk is the distance between
the path leg and the mountain terrain.

This paper uses the mountainous terrain for the first sce-
nario 1 of our simulation. Figure 1 shows the mission area
with mountainous terrain.

(3) The radar threat cost

The enemy might detect or attack the UAV if it goes into the
radar detection range. The longer the space amid the UAVs

and the radar, the lesser the chance that the UAVs are
detected. The radar cost is (Yang et al., 2015)

fR =
XNw

k = 2

Xn

l= 1
Bk, lwithBk, l =

d
Dk, l

� �4

, ifDk, l ł Rt

0, otherwise

(
ð7Þ

whereas

Dk, l =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk, l � xr

t

� �2
+ yk, l � yr

t

� �2
+ zk, l � zr

t

� �2
q

ð8Þ

Dk, l represents the distance between the path point (xk, l, yk, l,
zk, l) and the radar center (xr

t ,y
r
t , zr

t ). While d represents the
radar intensity, Rt represents the threat radius, Nw is the num-
ber of total path waypoints, and n is the number of radars.

(4) The collision cost

In multiple UAVs swarm, each UAV encounters obstacles
and other UAVs of the swarm. Therefore, the formation has
to take into account two problems at the same time; forma-
tion control and collision avoidance. It can only maintain the
formation if it is at enough distance from both the obstacles
and other UAVs.

To accomplish collision avoidance, Wang et al. (2007) uses
an indexing technique. This technique tags every UAV and
gives them a higher or lower index. A lower indexed UAV
constructs a virtual obstacle around the higher indexed UAV
and attempts to dodge it.

To avoid any collision, lower indexed UAVs must respond
quickly when nearby higher indexed UAVs or other obstacles
come within dangerous range. Therefore, a cost function of
collision avoidance is

fc =Pc 3
Xnumc

l= 1

dkl ð9Þ

dkl =
1, dkl ł dsafe

0, dkl . dsafe

	
ð10Þ

whereas Pc represents the penalty due to collision, and numc is
the amount of collisions that UAVk must avoid. While dkl is
the space between UAVk and the lth collision center, dsafe is the
space that UAVs are required to maintain among themselves
to avoid a collision.

(5) Altitude changing cost

UAV has to lower or raise its altitude to avoid colliding into
a mountain, UAVs, and other obstacles. The UAV also has
to change its altitude to maintain the formation. However,
this move consumes fuel. Moreover, low temperature nega-
tively affects engine performance; repeated movements may
be a danger for the safety of the aircraft. Hence, the algorithm
must prevent regular variations in height. The height varying
cost is given as

fH =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

k = 0

zk �
1

n+ 1

Xn

k1 = 0

zk1

 !2
vuut ð11Þ

Figure 1. The mission area including mountains.
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Figure 2 shows the mission area with obstacles (tall buildings)

and radars that is used for scenario 2. Collision avoidance

and altitude changing are crucial in this scenario to reach the

target without any accident.

Constraints of the optimization model

The constraints for the proposed optimization model can be

written as

lmin ł li ł lmax i= 1, 2, . . . , n

ci ł cmax i= 1, 2, . . . , n
qi ł qmax

Hi\Hmax

i= 1, 2, . . . , n

i= 1, 2, . . . , n

8><
>: ð12Þ

Whereas l represents the flight length, lmin and lmax represent

the minimum and maximum allowed flight length, c is the

turning angle, cmax is the maximum allowed turning angle, q

is the climb/dive angle and qmax is the maximum climb/dive

angle. Similarly, H is the altitude and Hmax is the maximum

allowed altitude.

Preliminaries of UAV formation with
communication delay

During the flight of multiple UAV formations, formation

members ensure the consistency of the formation configura-

tion through mutual information transmission and sharing.

In fact, in the process of the formation of members’ informa-

tion exchange, the communication delay is inevitable. This

situation has a certain impact on the stability of the entire

system, so this section has some practical significance to study

the consistency problem of the UAV formation system with

communication delay.

Communication graph concept of UAVs

Suppose G (V, E, A) represents a directed graph of communi-

cation topology when several drones are flying in formation,

where V = {V1, V2,.,Vk} is the vertex set, E is the edge set,

and A is the weight adjacency matrix.

The edge of a directed graph can be expressed as epq =

(Vp, Vq), where Vp is expressed as the tail of this edge, and Vq

is expressed as the head of this edge. The weight adjacency

matrix A= [apq], where the matrix elements represent the

adjacency weight; apq . 0 means that communication node p

can get the information of node q, otherwise apq =0.
Whereas the diagonal matrix D=diag{dp p=1,2,.,k} has

the elements of the ith row of matrix A added to get dp, and

the Laplace matrix of graph G is defined as L=D-A, where G
is an undirected graph, that is, apq =aqp. While L is a sym-

metric positive semi-definite matrix. If G is undirected and

any two nodes in it can be connected by edges, then G is called

an undirected connected graph. From the basic knowledge of

graph theory, we know that the matrix L can be diagonalized

to the minimum value of diagonal matrix G, that is, 0 that

satisfies the following

0= l1\l2 ł . . . ł lmax ð13Þ

Whereas l1 ; lmax are the eigenvalues of Laplace matrix L.
Suppose that the communication topology of a formation

system consisting of n drones is an undirected connected

graph. The dynamic system model of the UAV is approxi-

mately defined by the following second-order model

_xp tð Þ= np tð Þ
_np tð Þ= up tð Þ

	
p= 1, 2, . . . , k ð14Þ

Whereas xp is the position status of the formation member p,

vp is the speed status of formation member p, and up is the

control input of formation member p. To make sure that the

members of the formation are consistent with their expected

movement status, the following control protocol is adopted

up tð Þ=X
apq k1 xq t � tð Þ � xp t � tð Þ+ rpq

� �
+ k2 nq t � tð Þ � np t � tð Þ

� �
 �
+
Xk3

hp ns � np

� �
ð15Þ

Whereas k1, k2, k3 are the control gains of the system, t is the

time delay for information to transfer from formation mem-

bers q to p. While rpq is the expected relative position of the
formation members p and q; ns is the expected speed of the

formation, and hp is the ability index to obtain the expected

speed information of the formation. The matrix of the above

control protocol expressed as

U tð Þ=� kj LX t � tð Þ � diag ARð Þð Þ � k2LV t � tð Þ
� k3H V tð Þ � ns � 1n 3 1ð Þ

ð16Þ

Where R is the n3 n matrix formed by rij, and diag (AR) is a

vector of A3R diagonal elements; H is the n3 n diagonal

matrix formed by hi; x is a vector composed of the position

status of formation members, X(t)= [x1(t), x2(t)... xk]
T;

V(t) is the vector of the formation members’ speed states,

V(t) = [v1(t),v2(t)... vk]
T; and U(t) is the vector formed by

the control input of formation members, U(t) = [u1(t),

u2(t)... uk]
T. Then, the state equation of the system can be

written as

Figure 2. Mission environment with obstacles and radar.
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0 0
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� Ik �

0 0

0 k3

� 

�H

� �
X

V
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�
0 0

k1 k2

� 

� L

� �
X t � tð Þ
V t � tð Þ

� 

+

0

k1

� 

� diag ARð Þ+

0

k3vs

� 

� H3 Ik3 1ð Þ

ð17Þ

It can be seen from the state equations of the above system
that the goal of the control protocol is

lim
t!‘

xp tð Þ � xq tð Þ
�� ��! rpq

lim
t!‘

np tð Þ � nq tð Þ
�� ��! 0

lim
t!‘

np tð Þ= lim
t!‘

np ! ns

8>>><
>>>:

ð18Þ

That is, the relative positions of formation members p and q

approach the expected relative position rpq, and the speeds of
p and q both approach the expected speed ns. The above is

the mathematical description of the consistency problem of a
UAV formation system.

Formation modelling and control

Fixed-wing UAV model

This study primarily concentrates on the control of the multi-
UAV swarm. We use the point-mass system to model our
fixed-wing UAVs (Huang et al., 2016; Wang and Xin, 2012).

Take a swarm of UAVs into consideration using the model
given below

_xk =Vkcosgkcosxk ð19Þ

_yk =Vkcosgksinxk ð20Þ

_hk =Vksingk ð21Þ

Vk =
Tk � Dk

mk

� gsingk ð22Þ

_gk =
Lkcosuk � mkgcosgk

mkVk

ð23Þ

_xk =
Lksinuk

mkVkcosgk

ð24Þ

where k = 1, . . . ,M , M is the number of UAVs, xk and yk are
the forward and lateral displacement, respectively. hk is the
height, Vk is the ground velocity. gk is the flying path angle,
uk is the banking angle, and xk is the heading angle. Tk is the

thrust, Dk is the drag and Lk is the lift. mk and g are the mass
and the gravitational acceleration, respectively.

Using feedback linearization, the nonlinear model can be
linearized as

x
€

k = uxk

y
€

k = uyk

h
€

k = uhk

8>><
>>: ð25Þ

where uxk
, uyk

, and uhk
are simulated control inputs linked with

the UAV movements and height changes. The real control
inputs are banking angle, lift, and thrust, which are written as

uk = tan�1 uyk
cosxk � uxk

sinxk

uhk
+gð Þcosgk � uxk

cosxk +uyk
sinxk

� �
singk

 !

ð26Þ

Lk =
mk uhk

+ gð Þcosgk � uxk
cosxk + uyk

sinxk

� �
singk

cosuk

ð27Þ

Tk =mk uhk
+ gð Þsingk + uxk

cosxk + uyk
sinxk

� �
cosgk


 �
+Dk

ð28Þ

Additionally, Vk, xk, and hk must meet the following dynamic
parameters

Vmin ł Vk ł Vmax

xkj jł nmaxg=Vk

lmin ł hk ł lmax

8<
: ð29Þ

where Vmin and Vmax are the minimum and maximum velo-

city, nmax is the maximum lateral overload, lmin and lmax are
the minimum and maximum climbing speed.

Leader-follower formation control

We use the point mass model for the formation control of the

multi-UAV swarm. Every UAV flies at a certain height, paral-
lel to the 3D mission area. The model used for the formation
is given below

_x=VF : coscE: cosmE � _mL:z+ _cL:y� VL

_y=VF : sincE: cosmE � _cL:x
_z=VF : sinmE � _m:x

8<
: ð30Þ

mE =m
f
L � m

f
F

cE =c
f
L � c

f
F

	
ð31Þ

whereas x, y, zð Þ are the current coordinates of the UAV, VF

and VL are the angular and lateral velocity and cE and mE are
the heading angles in the x, y, zð Þ plane. Figure 3 shows the
desired leader-follower configuration.

Figure 3. Leader-follower configuration.
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In a usual multi-UAV swarm formation, the followers

pursue the path of the leader, keeping other UAVs as refer-

ences to maintain the formation. In a big formation, spaces

between UAVs must remain constant (He et al., 2018). In our

case, this is only true for scenario 1 with no dynamic obsta-

cles. Since scenario 2 contains dynamic threats, maintaining a

tight formation is difficult, hence there will be slight varia-

tions in distances between UAVs. This paper adopts leader-

follower formation control; that is, each follower plans its

path according to the leader, while the height remains the

same for every UAV. The leader UAV is always ahead of

every follower.
Our model uses a simulated leader instead of a real leader

so that followers can fine-tune their velocity and direction

according to the simulated leader. The main benefit of the

simulated leader is that a real leader can become dysfunc-

tional, while the simulated leader remains unharmed. The

simulated leader offers a firm and effective formation control

(Xuan-Mung and Hong, 2019).

Hybrid strategy for the formation control

PSO

PSO is a computational method based on the analysis of nat-

ural behaviors of fish schooling and bird flocking. The PSO

technique initializes with random solutions. It then repeatedly

updates the position and velocity to obtain a global best solu-

tion (Cheng and Jin, 2015; Liu et al., 2016). Every particle

dynamically updates its searching direction using its preced-

ing outcome, the individual best outcome, and the global best

outcome. Its updated position primarily relies on its earlier

position and the present velocity. Given the newly acquired

particle position is superior to its earlier position, the new

position becomes the individual best position. Given the new

particle position is superior to all other positions, it becomes

the global best position.
Consider path planning in a 3D space and assume D is the

waypoint of every particle, then the position and velocity vec-

tor Pk and Vk , respectively, for the kth particle are

Pk = P k, 1ð Þ, . . . ,P k,Dð Þ

 �T

= Px,Py,Pzð Þ k, 1ð Þ, . . . , Px,Py,Pzð Þ k,Dð Þ

h iT ð32Þ

Vk = V k, 1ð Þ, . . . ,V k,Dð Þ

 �T

= V x,V y,V zð Þ k, 1ð Þ, . . . , V x,V y,V zð Þ k,Dð Þ

h iT ð33Þ

where,l 2 1, :::,D; Px,Py,Pzð Þ k, lð Þ, V x,V y,V zð Þ k, lð Þ represent
the lth waypoint’s position and velocity of the kth particle in
3D.

If total particles are S, the swarm is given as

P1,V1ð Þ, P2,V2ð Þ, . . . , PS ,VSð Þ½ � ð34Þ

For PSO algorithm having S particles, there are the S individ-
ual optimal positions and one global optimal position, which
is

P k, bestð Þ= P k, 1, bestð Þ, . . . ,P k,D, bestð Þ

 �T

= Px,Py,Pzð Þ k, 1, bestð Þ, . . . , Px,Py,Pzð Þ k,D, bestð Þ

h iT

PG
best = P1, best, . . . ,PD, best½ �T

= Px,Py,Pzð Þ 1, bestð Þ, . . . , Px,Py,Pzð Þ D, bestð Þ

h iT

8><
>: ð35Þ

whereas k2 1,..., S is the particle number.
Now, for the multi-objective swarm function

P k, bestð Þ t+ 1ð Þ= P k, bestð Þ tð Þ; iff P k, bestð Þ tð Þ
� �

ł f Pk t+ 1ð Þð Þ
Pk t+ 1ð Þ; iff P k, bestð Þ tð Þ

� �
. f Pk t + 1ð Þð Þ

	
ð36Þ

PG
best 2 P k, 1, bestð Þ, . . . ,P k,D, bestð Þ

� �
ð37Þ

f PG
best tð Þ

� �
= min f Pbest, 1 tð Þð Þ, . . . , f Pbest,D tð Þð Þ½ � ð38Þ

Each particle in the swamp updates according to the following
equations

Pk, l t+ 1ð Þ=Pk, l tð Þ+Vk, l t + 1ð Þ
Vk, l t+ 1ð Þ=w � V k, lð Þ tð Þ+ a1 � r1 � P k, l, bestð Þ tð Þ � P k, lð Þ tð Þ

� �
+ a2 � r2 � Pbest

G, lð Þ tð Þ � P k, lð Þ tð Þ
� �(

ð39Þ

whereas a1 and a2 are accelerating coefficients, r1, r2 are any
two random numbers from 0 to 1.

We can improve PSO by modifying the inertia weight w. It
stabilizes the local and global outcomes through the search
procedure. By increasing the inertia weight, we can enhance

the global search. To improve the local search, decrease the
inertia weight, which is

w=
wmax � wminð Þt

T
ð40Þ

where t is the current iteration, T is the maximum iterations,
wmax and wmin represent the maximum and minimum value of
w, respectively.

Cauchy mutant operators

If x meets the condition given in the following equation, then
the below function becomes Cauchy distribution, which is

f x; x0, gð Þ= 1

p

g

x� x0ð Þ2 +g2

" #
, x 2 �‘, +‘ð Þ ð41Þ
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whereas x0 is the highest value of the function and g is the

width related to half of x0. When g and x0 are 1 and 0, respec-

tively, x meets the condition of the probability density func-

tion, and equation (41) becomes

F x; 0, 1ð Þ= 1

p
arctan xð Þ+ 1

2
, x 2 �‘, +‘ð Þ ð42Þ

(1) Map operators and compass operators

For the classic PSO algorithm, we use these operators to find

the global best outcomes during the search problem. Thus,

the best outcomes determine the particle’s velocity and posi-

tion. Cauchy Mutant (CM) operator c1 can increase the

searching area. It can also avoid falling into the local opti-

mum. The CM operator c1 written as

1

p
arctan c1ð Þ+

1

2
= rand

c1 = tan p rand � 1=2ð Þ½ �

8<
: ð43Þ

whereas rand is any number within the range of 0, 1ð Þ
Following rule updates every particle in each iteration

P
0

k =Pk0 + c1 Pk0 � PG
best

� �
ð44Þ

where Pk0 is the calculated position of k particle. After wmax

iterations, PG
best is the global best position with the ideal fitness

and P
0
k is the position of k after the update. During the next

iteration, the position of the k-th particle is

Pk =
P
0
k , f Pk0ð Þ. f P

0
k

� �
)

Pk0, f P
0
k

� �
. f Pk0ð Þ

	
ð45Þ

When c1 is positive, P
0
k will be far from PG

best and when c1 is

negative, P
0

k will be near PG
best. By using CM operators, half of

the particles will disperse away from the center to discover a

better position. Equating the updated position with the earlier

one, the outcome with better fitness remains. This will not

only help get better solutions but enhance the diversity of the

swarm as well.

(2) Landmark operators

In the classic PSO, at every iteration during the landmark

operator phase, half while also converging to the center of the

swarm decrease the swarm population. This will result in the

early convergence of the PSO. To prevent this, we replace the

old landmark operator with a Cauchy one, which only

updates the particle based on its optimal position. The

Cauchy function is written as

F x; 0, 1ð Þ= 2

p
arctan xð Þ, x 2 0, +‘ð Þ ð46Þ

CM operator c2 is written as

2

p
arctan c2ð Þ= rand

c2 = tan
2

p
rand

� �
8>><
>>: ð47Þ

In each iteration, every particle updated by the following rule

P
wmin

k0 =P
wmax

k0 + c2 PG
best � P

wmax

k0

� �
ð48Þ

where P
wmax

k0 is the position of kth particle after wmax iteration,

while PG
best is the global best position.

During the CM landmark operator phase, every particle
steadily moves towards the global best outcome because of
the operator c2. An effective CM operator can ensure the

steady convergence of the algorithm.

Hybrid algorithm

This section offers the comprehensive steps of the hybrid algo-
rithm for the multi-UAV swarm formation:

Step 1: Design the 3D mission environment, and terrain
model according to equations (1) and (2). Set the origin
and ending points for the UAV swarm.
Step 2: Initialize the parameters including total particle
number S, particle position and velocity D, inertia weight
w, Cauchy weight coefficients c1, c2, maximum number of
iterations T.
Step 3: Design the fitness function using equations (3) to
(11). Run the hybrid algorithm once.
Step 4: Observe the fitness functions of the whole swarm
and calculate the UAV’s best position and formation’s best
position.
Step 5: Update the constraints inertia weight w using equa-
tion (40) and Cauchy weight coefficients c1, c2 using equa-
tions (43) and (47).
Step 6: Update the particles using proposed methods
including swarm update using equation (39) and Cauchy
mutant operators using equations (44) and (48).
Step 7: Replicate steps 4–6 until the hybrid algorithm
achieves the maximum iterations T.
Step 8: Finish the hybrid algorithm and plot the fitness
functions.

Table 1 presents the pseudo-code for the proposed method,
which we can implement in any programming language or

MATLAB.

Simulation and discussion

To prove the effectiveness of the designed technique, this sec-
tion presents the simulations with different environments.
The simulations run on a computer with a processor of Intel�

CoreTM i7-1065G7, Win 10 64-bit operating system, 16 GB
RAM. The software usedeq for simulations is MATLAB �

R2020a.
This paper tested the proposed algorithm in two different

scenarios. We chose these scenarios to best represent the most
common challenges that both the civilian and military forces
face during their day-to-day operations. The first scenario
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contains an environment that includes mountainous terrain.

The second scenario includes a more complex dynamic envi-

ronment with radars and obstacles.

Scenario 1

In this simulation scenario, a formation of nine UAVs is to

fly from the origin to target under a mountainous terrain. Six

mountains are present in this scenario, whose constraints are

given in Table 2.
The swarm has four important objectives here; to avoid

the mountains, to avoid other UAVs, to maintain the forma-

tion, and to take the shortest possible route from the starting

position to the destination.
Figure 4 shows the 3D environment with mountains of dif-

ferent peaks. We can see the path of the swarm from start to

finish while avoiding the mountains and other UAVs. While

Figure 5 shows the same environment in the xy-plane, Figure

6 presents the xz-plane, and Figure 7 shows the yz-plane.
Figure 8 presents the fitness of all the UAVs through

multiple iterations. Since we have to show the fitness levels of

nine UAVs, the graph is a bit hard to read, and hence, a

zoomed-in portion of the graph is also present. As we can see,

the leader takes the longest to converge because it also travels

the most distance.

Comparing the fitness graph with a similar technique pre-

sented in Zhou et al. (2016), we can see that the fitness

levels for the traditional PSO and their proposed method

QPSO are in the range of 71–72. While our designed method

performs significantly better with fitness levels in the range of

20–30.
Finally, Table 3 presents the starting position, destination,

and the distance each UAV traveled during the whole mission.

We can notice the different origin points for the UAVs are to

avoid a collision.

Scenario 2

In this simulation scenario, a swarm of nine UAVs is to fly

from the origin to target in an environment with radars and

obstacles. Three obstacles are present in this scenario whose

constraints are given in Table 4. While Table 5 presents the

placements of the four radars.
In this scenario, the swarm has five important objectives;

to avoid the radar detection radius, to avoid the obstacles, to

avoid other UAVs, to maintain the formation, and to take

the shortest possible route from the starting position to the

destination.
Figure 9 shows two different views of the three-

dimensional environment with the radars and the obstacles.

We can see the path of the formation from start to finish. We

can also observe how it avoids radars and obstacles. The for-

mation is hard to maintain in this scenario because of

dynamic threats, therefore, we see slight variations in the for-

mation as compared to scenario 1. Figure 10 shows the mis-

sion environment in xy-plane, while Figure 11 presents the

yz-plane.

Table 2. Constraints of the mountains.

No. 1st mountain 2nd mountain 3rd mountain 4th mountain 5th mountain 6th mountain

Height (km) 0.5 1 1.75 1 1 2

Centre position (x,y) (10,10) (20,20) (30,30) (20,5) (30,15) (10,30)

Decline along axis (x) 2 2 4 2 2 4

Decline along axis (y) 2 2 4 2 4 4

Table 1. Pseudo code.

// Mission area

1 Set flying space by Eq. (1);

2 Set terrain by Eq. (2);

3 Set starting and ending positions for 9 UAVs

//Hybrid algorithm initialization

4 Set the swarm parameters S, D, wmax, wmin, c1, c2, T;

5 Set UAVnumber as 9;

6 Initialize parameters of the algorithm;

7 Set a relatively large value for fitness function;

8 Calculate particle fitness value and select Pbest and PG
best

//Main loop

9 For i = 1 to UAVnumber

10 For j = 1 to T

11 Update swarm parameters by Eqs. (34), (37), and (41);

12 Update swarm particles by Eqs. (33), (38), and (42);

13 Calculate particle fitness value;

14 Sort fitness value of all particles;

15 Select Pbest and PG
best;

16 Remember the value and the iteration for PG
best ;

17 j = j+ 1

18 End

19 i = i + 1

20 End

//Output

21 Output the fitness function for the swarm formation

Figure 4. 3D environment.
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Figure 6. Environment in xz-plane.

Figure 7. Environment in yz-plane.

Figure 5. Environment in xy-plane.
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Figure 12 shows the fitness of all the UAVs during multi-

ple iterations. Since we have to show the fitness levels of nine

UAVs on a single graph, it is a bit hard to comprehend, and

hence, the zoomed-in portion of the graph is also present.

Along with the leader, four follower UAVs also take longer

than other UAVs to converge because of the complexity of

the mission environment.
Finally, Table 6 presents the starting position, destination,

and the distance each UAV traveled during the whole sce-

nario. Again, the origin points for all UAVs are different to

avoid a collision.

Table 3. Coordinates of UAVs in scenario 1.

Leader

UAV

Follower

UAV 1

Follower

UAV 2

Follower

UAV 3

Follower

UAV 4

Follower

UAV 5

Follower

UAV 6

Follower UAV 7 Follower UAV 8

Origin

(x,y,z)

(0,10,0) (0,12,0) (0,8,0) (0,14,0) (0,6,0) (0,16,0) (0,4,0) (0,18,0) (0,2,0)

Target

(x,y,z)

(30,22,3.2) (25,22,2.5) (25,18,2.5) (25,24,2.5) (25,16,2.5) (25,26,2.5) (25,14,2.5) (25,28,2.5) (25,12,2.5)

Figure 9. 3D mission area through different angles.

Figure 8. Fitness of all UAVs in scenario 1.

Table 4. Constraints of the obstacles.

1st obstacle 2nd obstacle 3rd obstacle

Position (x,y) (8,20) (10,10) (20,18.6)

Altitude 2 2 2

Table 5. Radar placements.

1st radar 2nd radar 3rd radar 4th radar

Centre 1.5 1.5 1.5 1.5

Radius (x,y,z) (19,14,1.5) (23,20,2) (13,22.3,2) (11.5,15.5,1.5)
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Figure 10. The mission area in xy-plane.

Figure 11. The mission area in yz-plane.

Figure 12. Fitness of all UAVs in scenario 2.
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Conclusion and future research

For the formation control of the multi-UAV swarm in moun-

tainous terrain, the paper first modeled the terrain, radar,

and collision cost. Afterward, the study discussed the PSO

algorithm and its characteristics. Then, the research intro-

duced Cauchy mutant operators and designed a novel hybrid

algorithm. This algorithm was an improvement over classic

PSO and offered much better fitness. The simulations demon-

strate that the designed hybrid algorithm could find the short-

est possible paths with better fitness while also avoiding the

obstacles and other UAVs. The algorithm helped maintain

the formation and met coordination parameters.
Future research could focus on further enhancing the fit-

ness function and reducing the terrain, radar, and collision

costs. The authors also propose to implement the designed

algorithm on hardware and perform some experiments. Then,

the experimental results and the simulation results presented

in this study can be compared to see if there is a variation in

performance.
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