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In this paper, we propose a new model of security price dynamics in order to explain the stylized facts of the pricing process such
as power law distribution, volatility clustering, jumps, and structural changes. We assume that there are two types of agents in the
financial market: speculators and fundamental investors. Speculators use past prices to predict future prices and only buy assets
whose prices are expected to rise. Fundamental investors attach a certain value to each asset and buy when the asset is undervalued
by the market. When the expectations of agents are exogenously driven, that is, entirely shaped by exogenous news, then they can
be modeled as following a random walk. We assume that the information related to the two types of agents in the model will arrive
randomly with a certain probability distribution and change the viewpoint of the agents according to a certain percentage. Our
simulated results show that this model can simulate well the randomwalk of asset prices and explain the power-law tail distribution
of returns, volatility clustering, jumps, and structural changes of asset prices.

1. Introduction

Many empirical studies point out the fact that there are
typically power-law tails, volatility clustering, jumps, and
structural changes in time series of financial asset prices.
Gabaix et al. [1] summarized many research results and
found heavy-tailed long-range distributionswith characteris-
tic power-law exponents, the so-called inverse cubic law.They
pointed out that this is rather “universal” for financialmarkets
in most countries, with time intervals ranging from one
minute to onemonth, across different sizes of stocks, different
time periods, and different stock market indices. Later, they
proposed a basicmodel with power-law distribution in which
volatility is caused by the trades of large institutions [2]. The
volatility clustering means that the price changes of financial
assets are positively correlated. The high volatility or low
volatility of the stock market tends to concentrate in a certain
period of time, presenting the so-called volatility clustering
effect.

In recent years, the jumps in security price have also
attracted widespread attention. Jump-diffusion models are
considered in Merton [3]. Eraker [4] and others found that,
in real financial markets, stock price data cannot be fully

explained by Brownian motion. They named the behavior of
the asset price change in a short period of time the “price
jump behavior”. The jumps in price are generally believed to
be due to the release of news and liquidity [5, 6]. At the same
time, the phenomenon of structural changes based on price
jumps is also the focus of research. The structural changes
of volatility is ubiquitous in the stock markets of various
countries, which makes people pay more attention to the
stability of stock market volatility and reasons that lead to
volatility changing structure. In general, the appearance of the
structural changes of volatility is caused by some big events
in the social economy. The violent volatilities of the stock
marketmay be caused by the adjustment of economic policies
or the influence of some other major economic events, such
as financial innovation, failure of internal control mechanism
of enterprises, failure of financial risk relationships, the out
of control of the market supervision mechanism, etc. These
factors often make stock price ticket deviate from the normal
fluctuation, and bring shock to the financial system. Eraker,
Johannes, and Polson [7] have definitive evidence that the
volatility of returns is affected by structural mutations, and
they point out that there are structural changes in both
volatility and returns. Broadie, Chernov, and Johannes [8]
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also reach similar conclusions. It is generally believed that
the long-memory property of asset price changes is closely
related to structural changes [9, 10].

Based on the typical characteristics of the above asset
pricing processes, Inoua [11] proposed a random walk model
that reflects the changes in asset prices. However, this model
only reflects the power law and volatility clustering of the
pricing process. There is no discussion of the jumps and
structural changes. Hence, based on the work of Inoua [11],
we have improved themodel in order to reflect the jumps and
structural changes of asset prices.

The remainder of this paper is organized as followings. In
Section 2, we describe some typical facts about the process
of asset price in China’s stock market, such as the power-law
characteristics of the distribution of returns, volatility clus-
tering, jumps in prices, and structural changes. In Section 3
we propose an improved price dynamics model based on the
work of Inoua [11].The fourth section contains the simulation
analysis. By analyzing a simulation of the pricing process, we
determine the typical dynamic characteristics of asset prices.
In the last section, we present our conclusions.

2. Empirical Analysis of Asset Price Changes

Below we give an empirical example of typical characteristics
of the pricing process in China’s stock market. The data we
use comes from a total of 58,560 pieces of high-frequency
transaction data of Shanghai Stock Exchange (SSE) 50 index
stocks (SSE 50 Index is the stock index of Shanghai Stock
Exchange, representing the top 50 companies by “float-
adjusted” capitalization), from January 3, 2017, to Decem-
ber 29, 2017. Since China’s stock market has only 4 hours
of trading time per trading day, the overnight effect and
alternate-day effect may exist if all 1-minute price series are
directly connected. This will affect the results of the jump
test on asset prices, so we need to address the overnight
effect and alternate-day effect first.Theovernight returns after
processing are given by

𝑟𝐺𝑡 = (𝑟𝑔𝑡 − 𝑟𝑔𝑡√𝑠 )𝜎 + 𝜇 (1)

where 𝑟𝑔𝑡 denotes the original overnight returns, 𝑟𝑔𝑡 denotes
the mean of 𝑟𝑔𝑡, 𝑠 denotes the variance of all the samples,
and 𝜎 and 𝜇 are the standard deviation and mean of all
nonovernight returns. The treatment of the alternate-day
effect is the same as for the overnight effect.

Let 𝑃𝑡 be the price of a financial asset at time t, and 𝑟𝑡 ≡(𝑃𝑡−𝑃𝑡−1)/𝑃𝑡−1 be the return during this period. According to
[1, 2, 12], the returns follow the power law distribution with
cubic exponent. That is,

𝑃 (󵄨󵄨󵄨󵄨𝑟𝑡󵄨󵄨󵄨󵄨 > 𝑥) ∼ 𝐶𝑥−𝜇 (2)

as 𝑥 󳨀→ ∞, where 𝜇 ≈ 3 and 𝐶 > 0.
We analyze the one-minute price series as an example.

Figure 1 displays the results concerning price series, return
series, power-law distribution, and autocorrelation.

To test the volatility clustering effect of returns, we use
the Breusch-Godfrey method, which is based on the idea

of Lagrange multiplier testing, to test heteroscedasticity. The
basic idea of this method is to build the auxiliary function
between the residual squared sequence and the explanatory
variables and to obtain the regression sum of squares (ESS),
in order to judge the significance of heteroscedasticity. For
a given level of significance of 0.05, the p-value of the
return is 2.2e-16. Thus, we can reject the null hypothesis
that the residual variance is constant and infer that the
heteroskedasticity does exist. This confirms the volatility
clustering property. In short, Figure 1 shows that asset price
series follow a random walk, and the tail of the distribution
of returns exhibits a power-law distributionwith an exponent
of 3. The volatility of asset prices shows a significant long-
memory property.

We use the LM test proposed by Lee and Mykland [13]
to detect jump arrival times on the high-frequency returns.
The core concept of this method is to construct a statistic
based on local volatility and instantaneous volatility and
use it to deduce the distribution function. As long as the
significance level is given, by calculating the value of the
statistic corresponding to the stock price at a certain moment
and comparing it with the threshold of the significance level,
it can be judged whether this point is a jump. We process the
1-minute return series at a sampling interval of 5 minutes and
apply the LM test. We find that there are 32 jumps between
January 3 and December 29, 2017. The specific jumps are
shown in Figure 2.

To further illustrate the structural changes of the asset
pricing process, we analyze the data of 58,560 1-minute
closing prices. We first perform natural logarithm processing
on the selected 58,560 pieces of data and obtain a total of
58,559 pieces of data after the first order difference. Then,
the CUSUM test is used to detect the structural changes of
the 1-minute return series, which is based on nonparametric
estimation [14–16]. The results are shown in Figure 3.

As seen from Figure 3, the returns of the SSE 50 index
show a significant volatility clustering effect and structural
change characteristics (the dashed line in the figure).

On the basis of the analysis above, we can infer that there
are typically power-law tail distribution, volatility clustering,
jumps, and structural changes in stock index returns. These
typical facts of the asset-price processes cannot be explained
by traditional financial theory. Some scholars have tried to
establish more complex theoretical models to explain these
facts, such as the theory of fractal markets proposed by Peters
[17], and some scholars have used agent-based modeling to
build a new theoretical framework [18]. However, as Inoua
[11] pointed out, these facts are widespread in empirical
analysis and there must be some basic rules that account for
them.This paper improves the randomwalkmodel proposed
by Inoua [11] to reflect these facts that are typical of the asset
pricing process.

3. Price Dynamics Model

As a typical complex dynamic system of multiagent inter-
action, financial market has attracted extensive attention
and made great progress in the past decades. Quantifying
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Figure 1: �e empirical analysis of the SSE 50 Index's 1-minute price series. (a) 1-minute price series; (b) return series that eliminates the
overnight effect (in percentage); (c) tail distribution of the absolute return in the log-log scale and a least-square fit for values with a slope
of three; (d) autocorrelation function of return and absolute return, where the autocorrelation function of absolute return decays slowly,
indicating that the volatility has long-memory characteristics.
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Figure 2: Jumps of the 5-minute interval under the LM test. Eliminate the overnight effect of the 2017 SSE 50 index data. Process the data at a
5-minute sampling interval and calculate the value of the LM statistic. Compared with the yellow horizontal reference line for the significance
level threshold in the figure, the 32 points marked red are beyond the normal value range.

price dynamics in financial markets will provide a great
foundation for deepening our understanding of financial
market behaviors. There have been various approaches to
study the performance of financial markets. Poggio et al. [19]
use agent-based model of financial markets to match those
in experimental-market settings with human subjects and

simulate complex interactions among artificial intelligence
traders with varying degrees of learning capabilities. Biondo
[8] introduce a new Self-Organized Criticality (SOC) model
for simulating price evolution in an artificial financialmarket,
based on a multilayer network of traders. Lima and Miranda
[20] use the Itô’s stochastic differential equation for the
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Figure 3:Changes in the 1-minute returns in the Chinese StockMarket.The CUSUM test finds 3 structural changes, which can divide the entire
return series into 4 phases. The first phase is from January 3 to January 18, the second phase is from January 19 to March 20, the third phase
is fromMarch 21 to May 21, and the fourth phase is fromMay 22 to December 29.

double well with additive white noise as a mathematical
model for price dynamics of the financial market.

According to Provenzano [21], most of these agent-based
models consist of two typical types of agents. The first type
of agent considers that the stock price is determined by the
fundamental market value of the asset, while the second type
of agent can predict the future price using simple trading
rules, extrapolation of trend, and patterns observed in past
prices. In the power-law distribution model proposed by
Inoua [11], the main players of the market are speculators.
They use past prices to predict future prices, form price
expectations, and only buy assetswhose prices are expected to
rise (otherwise, they sell). Since the price expectations of the
market are endogenous, the return in the speculative market
obeys the autoregressive process of random coefficients.
Later, Inoua [22] added fundamental investors to the original
model in order to achieve the volatility clustering of the
pricing process. Fundamental investors attach a certain value
to each asset and choose to buy or sell assets based on
their judgment of the value of the assets. The model further
assumes that the expectations of the two types of trading
agents are affected by exogenous information at the same
time; the price is considered to be obeying the random walk
process with exogenous impacts, which can imply volatility
clustering in a generic way.

Our model is based on the above model. We assume that
the market consists of two types of agents: speculators, who
buy an asset for a purely speculative reason, that is, when they
expect its price to rise, and sell otherwise; and fundamental
investors, who attach a certain value to an asset and buy it
when they think it is worth more than its current price, and
sell otherwise. The expected returns for these two types of
agents are affected by the external information (event flow)
of the same market, but the two types of agents differ in their
response intensity.

On the basis of Inoua [11] model, we assume that the
demand of the ith speculator is 𝑥𝑖𝑡 = 𝛼𝑟(1)𝑖𝑡 , where 𝑟(1)𝑖𝑡 denotes
the returns that the ith speculator expects to gain in period t,
and the superscript (1) indicates that the agent is of the first
type, namely, a speculator. We assume that the demand of the

jth fundamental investor is 𝑥𝑗𝑡 = 𝛾𝑟(2)𝑗𝑡 , where 𝑟(2)𝑗𝑡 denotes
the returns that the jth speculator expects to gain in period
t, and the superscript (2) indicates that the agent is of the
second type, namely, a fundamental investor. And 𝛼, 𝛾 > 0
are constant conversion factors, indicating that the agent’s
demand for assets changes linearly with the expected return
of the asset at a certain ratio.

The two types of agents have different estimated expected
returns. For speculators, the expected return is 𝑟(1)𝑖𝑡 = (𝑃𝑖𝑡 −𝑃𝑡−1)/𝑃𝑡−1, where𝑃𝑖𝑡 is the price of the ith speculative estimate
in period t. For fundamental investors, the expected return
is 𝑟(2)𝑗𝑡 = (𝑉𝑗𝑡 − 𝑃𝑡−1)/𝑃𝑡−1, where 𝑉𝑗𝑡 is the asset value of
the jth fundamental investor’s estimates in period t. The total
demand can be expressed as

𝑥𝑡 = 𝛼𝑁𝑡𝑟(1)𝑡 + 𝛾𝑀𝑡𝑟(2)𝑡 (3)

where 𝑁𝑡 and 𝑀𝑡 denote the number of speculators and
fundamental investors, respectively, who desire to buy or sell
an asset during period t. Then, the expected returns for all
speculators and fundamental investors are, on average, 𝑟(1)𝑡 ≡
𝑁−1𝑡 ∑𝑖 𝑟(1)𝑖𝑡 and 𝑟(2)𝑡 ≡ 𝑀−1𝑡 ∑𝑗 𝑟(2)𝑗𝑡 , respectively.

We suppose that the return changes linearly with the total
demand; this can be written as 𝑟𝑡 = 𝛽𝑥𝑡 = 𝛼𝛽𝑁𝑡𝑟(1)𝑡 +
𝛾𝛽𝑀𝑡𝑟(2)𝑡 , 𝛽 > 0. To simplify the calculation, let 𝑎𝑡 ≡ 𝛼𝛽𝑁𝑡
and 𝑏𝑡 ≡ 𝛾𝛽𝑀𝑡; then the return is written as

𝑟𝑡 = 𝑎𝑡𝑟(1)𝑡 + 𝑏𝑡𝑟(2)𝑡 (4)

Inoua [11] pointed out that when E(𝑎𝑡) < 1 and E(𝑏𝑡) < 1,
(4) is the Kesten [23] process, and there is a power-law
distributionwith an exponent greater than 1.The dynamics of
price can then be calculated by using the following equation:

𝑃𝑡 = 𝑃𝑡−1 (𝑟𝑡 + 1) = 𝑃0 𝑡∏
𝑘=1

(𝑟𝑘 + 1) (5)
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Hence, the price will depend on the composition of the two
types of agents: those with endogenous expectations and
those with exogenous expectations.

Suppose the impact of external information (event flow)
on individual decisions is 𝐸𝑡. 𝐸𝑡 can be generally expressed
as a semimartingale process, such as a typical diffusion-
jump process, where the diffusion component represents the
comprehensive influence of daily market information, and
the jump component can be a typical compound Poisson
process indicating that the market is impacted by large
external events. In order to simplify the analysis, this paper
assumes that 𝐸𝑡 is an independent and identically distributed
normal process synchronized with the pricing process. As we
can see in the simulation section, this simple assumption can
still obtain various typical characteristics of the return series.
We use the indicator function, 𝐼(|𝐸𝑡| ≥ 𝜃1) and 𝐼(|𝐸𝑡| ≥𝜃2), to indicate that when the impact of external events
reaches 𝜃1 and 𝜃2, respectively, it will have a correspondingly
large impact on the expected returns of speculators and
fundamental investors. If we assume the expectations of the
two types of agents follow the AR(3) process, then we have

𝑟(1)𝑡 = 𝜑1𝑟(1)𝑡−1 + 𝜎1𝐸𝑡𝐼 (󵄨󵄨󵄨󵄨𝐸𝑡󵄨󵄨󵄨󵄨 ≥ 𝜃1) (6)

𝑟(2)𝑡 = 𝜑2𝑟(2)𝑡−1 + 𝜎2𝐸𝑡𝐼 (󵄨󵄨󵄨󵄨𝐸𝑡󵄨󵄨󵄨󵄨 ≥ 𝜃2) (7)

where 𝜑1 and 𝜑2 are autoregression coefficients and 𝜎1 and 𝜎2
are scale factors, which are used to adjust the magnitude of
the external events’ impact value and reduce the influence of
the extreme values. In particular, when 𝜑1 = 𝜑2 = 1, (6) and
(7) are random walk processes.

By using the randomwalkmodel, that is, letting𝜑1 = 𝜑2 =1 in (6) and (7), the expression of the return becomes

𝑟𝑡 = 𝑎𝑡 [𝑟(1)0 + 𝑡∑
𝑘=1

𝜎1𝐸𝑘𝐼 (󵄨󵄨󵄨󵄨𝐸𝑘󵄨󵄨󵄨󵄨 ≥ 𝜃1)]

+ 𝑏𝑡 [𝑟(2)0 + 𝑡∑
𝑘=1

𝜎2𝐸𝑘𝐼 (󵄨󵄨󵄨󵄨𝐸𝑘󵄨󵄨󵄨󵄨 ≥ 𝜃2)]
(8)

where 𝑟(1)0 = 0 and 𝑟(2)0 = (𝑉0 − 𝑃0)/𝑃0 and 𝑉0 denotes
the initial expected value of the asset for the fundamental
investor.

If the reaction of the two types of agents to the impact
of external events on the market changes over time, that is,
if agents' expectations are related to market conditions, such
as a bear or bull market, then 𝜃1 and 𝜃2 can be regarded as
functions of time or market conditions. The return can then
be written as

𝑟𝑡 = 𝑎𝑡 𝑡∑
𝑘=1

𝜎1𝐸𝑘𝐼 (󵄨󵄨󵄨󵄨𝐸𝑘󵄨󵄨󵄨󵄨 ≥ 𝜃1 (𝑡))

+ 𝑏𝑡 [𝑟(2)0 + 𝑡∑
𝑘=1

𝜎2𝐸𝑘𝐼 (󵄨󵄨󵄨󵄨𝐸𝑘󵄨󵄨󵄨󵄨 ≥ 𝜃2 (𝑡))]
(9)

or

𝑟𝑡 = 𝑎𝑡 𝑡∑
𝑘=1

𝜎1𝐸𝑘{{{
𝐼 (󵄨󵄨󵄨󵄨𝐸𝑘󵄨󵄨󵄨󵄨 ≥ 𝜃1(𝐼)) 1 ≤ 𝑘 < 𝑚
𝐼 (󵄨󵄨󵄨󵄨𝐸𝑘󵄨󵄨󵄨󵄨 ≥ 𝜃1(𝐼𝐼)) 𝑚 ≤ 𝑘 ≤ 𝑡

+ 𝑏𝑡 [[
𝑟(2)0

+ 𝑡∑
𝑘=1

𝜎2𝐸𝑘{{{
𝐼 (󵄨󵄨󵄨󵄨𝐸𝑘󵄨󵄨󵄨󵄨 ≥ 𝜃2(𝐼)) 1 ≤ 𝑘 < 𝑚
𝐼 (󵄨󵄨󵄨󵄨𝐸𝑘󵄨󵄨󵄨󵄨 ≥ 𝜃2(𝐼𝐼)) 𝑚 ≤ 𝑘 ≤ 𝑡 ]]

(10)

where 𝜃1(𝐼) and 𝜃2(𝐼) denote the threshold when the market is
in state(I) and 𝜃1(𝐼𝐼) and 𝜃2(𝐼𝐼) denote the market’s threshold
under state(II).

By adjusting the thresholds under different market con-
ditions, we can also determine the structural changes caused
by the impact of exogenous information.

4. Simulation Analysis

In this chapter, we will simulate the price dynamics model
(10) derived in the previous section. We first set the initial
asset price and value as 100 and carry out 10,000 time unit
simulation of the price change process according to the estab-
lishedmodel.We hypothesize that the expected returns of the
two types of agents would follow the random walk process in
(6) and (7), and the thresholds and other parameters involved
in the randomwalk process are given by (10). Here we assume
that𝐸𝑡 is an independent and identically distributed standard
normal distribution sequence synchronized with the pricing
process, which can be directly generated by randomnumbers.
The result of each step of the random walk will have an
impact on the subsequent trend of asset price and value,
which will further affect the expectations of both types of
agents. Finally, we will get the asset price, value, and return
sequences based on the random walk process of two types of
agents.The specific parameter settings and simulation results
are analyzed as follows.

4.1. Parameter Settings. In the price dynamics model (10),𝜎1 and 𝜎2 are the scaling parameters. Due to the fact that
influence of external events 𝐸𝑡 follows the standard normal
distribution, which is different from the expected returns of
the two types of investors in the numerical values, we refer
to the method in Inoua’s paper and adjust the impact values
of external events by introducing scale factors. Therefore
the expected returns will not have a large change or even a
negative value, which is consistent with the actual situation
of the market. Referring to the parameter settings of Inoua
[11], we let the scale factors 𝜎1 and 𝜎2 be 0.001 and 0.1.
According to the settings in the paper, the probability of
the events associated with the arrival in period t of events
relevant to the two types of agents are 1 and 0.1, respectively.
In the new mechanism we construct, the threshold 𝜃1 for the
occurrence of the event that has an impact on the speculator
is 0, indicating the inevitable event. And the range of the
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Table 1: Sensitivity analysis of threshold 𝜃2.
𝜃2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Mean of price 99.93 100.22 100.11 100.09 99.64 99.91 100.17 100.14 99.89 100.13
Std. of price 2.84 2.78 2.68 2.55 2.36 2.27 2.11 1.93 1.84 1.72
Skewness -0.03 -0.01 -0.01 -0.03 -0.01 -0.01 -0.03 0.02 -0.02 -0.01
Kurtosis -0.50 -0.55 -0.55 -0.53 -0.53 -0.52 -0.50 -0.50 -0.51 -0.56
Mean of the power exponent 3.17 3.17 3.18 3.17 3.17 3.18 3.16 3.17 3.17 3.18
Std. of the power exponent 0.23 0.23 0.23 0.22 0.22 0.23 0.23 0.23 0.23 0.23

Table 2: Sensitivity analysis of the parameter of exponential distribution 𝑎𝑡.
𝑎𝑡 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Mean 100.11 100.02 100.02 99.86 99.64 100.19 100.16 99.81 100.08 99.90
Std. 2.61 2.57 2.48 2.42 2.36 2.34 2.29 2.26 2.25 2.19
Skewness -0.02 0.01 0.01 -0.01 -0.01 0.01 0.04 -0.04 -0.01 -0.01
Kurtosis -0.59 -0.56 -0.61 -0.54 -0.53 -0.51 -0.46 -0.39 -0.38 -0.29
Mean of the power exponent 3.11 3.14 3.14 3.16 3.17 3.19 3.20 3.20 3.20 3.22
Std. of the power exponent 0.21 0.23 0.22 0.23 0.22 0.22 0.24 0.24 0.23 0.23

Table 3: Sensitivity analysis of the parameter of exponential distribution 𝑏𝑡.
𝑏𝑡 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35
Mean 99.90 99.84 100.10 100.02 99.64 100.07 100.17 100.12 100.08 99.90
Std. 2.29 2.33 2.33 2.40 2.36 2.38 2.41 2.40 2.25 2.19
Skewness -0.01 -0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01 0.01 -0.01
Kurtosis -0.50 -0.52 -0.52 -0.53 -0.53 -0.52 -0.56 -0.51 -0.51 -0.29
Mean of the power exponent 3.23 3.19 3.19 3.17 3.17 3.16 3.16 3.15 3.15 3.12
Std. of the power exponent 0.23 0.24 0.23 0.22 0.22 0.22 0.22 0.23 0.23 0.23

threshold 𝜃2 of the fundamental investor is adjusted to make
the corresponding event happen with a small probability of
about 3% to 15%, then the sensitivity analysis is performed as
shown in Table 1.

By adjusting 𝜃2, we can see that, as its value increases, the
standard deviation of price decreases, having little effect on
other statistical indicators. Within this range, we may select
a value of 1.5 with a probability of about 7% for the following
simulation.

Inoua using exponential distributions for 𝑎𝑡 and 𝑏𝑡 with
respective means 0.1 and 0.3 and verifies that the model holds
for different distributions of 𝑎𝑡 and 𝑏𝑡 and for a broad range
of values of the parameters. Due to the improvement of the
mechanism, in order to make the simulation results more
consistent with the empirical data, we adjust the parameters
of exponential distribution 𝑎𝑡 and 𝑏𝑡 on the basis of Inoua’s
model and carry out sensitivity analysis. The results are
shown in Tables 2 and 3.

By adjusting the value range of 𝑎𝑡, we find that, as the
value increases, the standard deviation of price decreases and
the power exponent of the power-law distribution increases.
And as the parameter of 𝑏𝑡 increases, only the power exponent
of the power-law distribution decreases, having little effect
on other statistical indicators. In order to get closer to the
empirical data on the basis of the original model, we refer
to the parameter range of the original model and select the

parameter values of 0.05 and 0.3 in the following simulation,
respectively

As described by Inoua [11], the volatility clustering is
generic in this model, and it holds for different distributions
of 𝑎𝑡 and 𝑏𝑡 and for a broad range of values of the parameters
(as we have checked). Most parameters play only a quantita-
tive role; therefore, parameters 𝜎1, 𝜎2, 𝜃1, and 𝜃2 are chosen
in this simulationmerely to ‘calibrate’ the model with the real
daily data displayed in Figure 1, namely, to have a standard
deviation of return around one percent. Next, we simulate
on the basis of the above parameter settings and analyze the
results of the simulation.

4.2. Power-Law Distribution and Volatility Clustering of Pric-
ing Process. In the parameter settings in the previous section,
we use exponential distributions for 𝑎𝑡 and 𝑏𝑡 with respective
means of 0.05 and 0.3. Let the scale factors 𝜎1 and 𝜎2 be 0.001
and 0.1, respectively, and the threshold values 𝜃1 and 𝜃2 of
the external information impact be 0 and 1.5, respectively.
Let the initial asset price and value both be 100, and simulate
10,000 time units of the price-changing process according to
our model. The results are shown in Figure 4.

To see clearly the changing process of price and value, we
selected the first 500 sets of data for the simulation results in
Figure 4(a); they indicate that the trend of prices is basically
the same as the change of value. Figure 4(b) includes 10,000
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Figure 4: Simulation results. (a) Simulated trajectory of asset prices and values (for clarity, only the 500 first sets of data are shown); (b)
return series (in percentage); (c) tail distribution of the absolute return in the log-log scale and a least-square fit for values; (d) autocorrelation
function of return and absolute return; the autocorrelation function of absolute return decays slowly, indicating that the volatility has long-
memory characteristics.
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Figure 5: Jumps of the simulated data of the 5-minute interval
under the LM test. Referring to the length of the empirical data,
we simulate the price data of 58560 time units. Process the data
at a 5-minute sampling interval and calculate the value of the LM
statistic. Compared with the yellow horizontal reference line for the
significance level threshold in the figure, the 32 points marked red
are beyond the normal value range.

sets of return data, which show that there is a significant
volatility clustering effect. The power exponent of the power-
law distribution in Figure 4(c) is 3.2, which is very close to the
actual situation of financial market in papers. In Figure 4(d),
the autocorrelation function of absolute return decays slowly,
reflecting the long-memory characteristics of the volatility.

To further verify the statistical characteristics of the
power exponent, we repeat the simulation process 1000 times;
themean value of the power exponent is 3.16 and the standard
deviation is 0.23. To test the volatility clustering effect of
returns, we also use the Breusch-Godfrey test to construct
Lagrange multiplier statistics to test for heteroscedasticity.
For a given significance level of 0.05, the p-value of the
return is 1.665e-15. Thus, we can reject the null hypothe-
sis that the residual variance is constant and deduce that
heteroscedasticity does exist which confirms the graphic
inference (Figure 4(b)) and is consistent with the empirical
results in Section 2.

4.3. Jumps and Structural Changes of the Pricing Process. For
the simulation results, we use the LM test to construct the
jump statistic based on volatility and use this statistic to test
the jump phenomenon of price series.
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Figure 6: Simulation results of price series and value series under different thresholds. (a) The trajectory of price and value with a threshold of
1.5. (b) The trajectory of price and value with a threshold of 2. (c) The trajectory of price and value with a threshold of 2.5. (d) The trajectory
of price and value with a threshold of 3.

TheLM test is carried out for 1000 groups of data obtained
after 1000 repetitions of the simulation process; the average
of the 1000 test results is close to the LM test results for the
empirical data. Figure 5 is the distribution of jump statistics
for a group of simulated data. Comparing the test statistic
with the horizontal reference line of the significance level
threshold in Figure 5, we can see that a total of 32 jumps have
taken place in the 5-minute sampling interval. Compared
with the test results of the SSE 50 index in Figure 2, the results
simulated by our model are close to the real data.

To simulate the impact of special exogenous information
that will lead to the phenomenon of structural changing of
the price, we adjust the parameters related to the impact

degree of external events. The price changes depend mainly
on the value of the assets; that is, the value of the assets as
predicted by fundamental investors will lead the price trend.
We simulate the structural changes of prices by increasing
the threshold and degree of the impact of external events on
fundamental investors. We set the threshold 𝜃2 of the impact
of external events that affects the value of assets to be 1.5, 2, 2.5,
and 3, which denotes that the probability of occurrence and
degree of impact on the expectation of fundamental investors
are reduced. The results are shown in Figure 6.

In order to check whether there are structural changes
in volatility and compare with the empirical test results, we
simulate 5,000 minutes of closing price data with a threshold
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Figure 7: Structural changes test results ofminute returns of simulated
data. The CUSUM test finds 2 structural changes, namely, the 1976
time unit and the 2891 time unit marked by arrows in the figure,
which candivide the entire return series into 3 phases.Thefirst phase
is from 1 to 1976 time unit, the second phase is from 1977 to 2891 time
unit, and the third phase is from 2892 to the end.

of 3 and perform natural logarithmic processing. The return
series can be obtained by first order difference. Then, the
CUSUM test based on nonparametric estimation is used to
detect the structural changes of volatility of in 1-minute return
series. The results are shown in Figure 7.

Compared with the test results of empirical data in
Figure 3, we find that the price series simulated using our
proposed mechanism indeed exhibit the structural change
characteristics similar to that of empirical data through the
adjustment of parameters. As seen from Figures 6 and 7,
by adjusting the threshold value of the model, asset-price
process can appear to have obvious jumps and structural
changes.

4.4. Summary. In this section, the price dynamics model
derived in Section 3 is simulated and analyzed, and the
statistical results are compared with the empirical results
in Section 2. Referring to the parameter settings in Inoua’s
paper and the statistical results of empirical data, we adjust
and test the parameters, analyze the simulation results, and
find that the pricing process has power-law distribution
and volatility clustering phenomenon, which is consistent
with the simulation results of Inoua’s model and similar
to the empirical results in Section 2 in terms of price
change path, returns distribution, and statistical indicators.
Further, LM test is used to test the jump phenomenon of
price, and the test results are consistent with the empir-
ical data in Section 2. Finally, by adjusting the param-
eters, we find that the price dynamics model can also
simulate the structural changes existing in the empirical
data.

In conclusion, the asset-price process we give displays
the typical characteristics of real asset price changes. This
provides an important basis for us to understand the inherent
laws of asset price changes and improve investment decisions.

5. Conclusion

In this paper, based on the typical characteristics of the
power-law distribution, volatility clustering, jumps, and
structural changes in China’s stock market, we improve and
expand the model given by Inoua [11] and propose a price
generating mechanism model with exogenous information
impact. Our simulation results show that the asset price
dynamics model displays the typical characteristics of real
asset-price process. It can not only reproduce the power-law
tail characteristics and the volatility clustering of returns but
also reflect the jumps and structural changes that occur in the
actual pricing process.

This result indicates that an asset-price process can follow
simple rules, and the reason for its complicated changes
may be the impact of external information on the market
investors.This helps us to understand the law of price changes
of risky assets and make better investment decisions.
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