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Abstract. Based on the minimum loss probability criterion, this paper discusses the optimal strategy in

multi-asset liquidation. First, we give the framework of the multi-asset liquidation problem and obtain

the boundary conditions of the optimal liquidation strategy under the assumption of linear price impact

functions and transform the multi-asset liquidation problem into the portfolio liquidation problem. On

this basis, the asymptotic solution and numerical solution of the optimal liquidation strategy are obtained.

Then, we simulate the trajectories of the optimal liquidation strategy and analyze the effects of parameters

changes.

Keywords: Minimum loss probability, multi-asset liquidation, permanent impact, temporary impact, opti-

mal liquidation strategy

1. Introduction
With the rapid development of computer and

Internet technology, great changes have taken

place in the transaction modes in the modern

financial market. Algorithmic trading charac-

terized by high-frequency data processing and

automatic computer ordering emerges. Algo-

rithmic trading refers to the general term of

making trading decisions, submitting orders

and managing orders by computer. Brunner-

meier and Pedersen (2008) and Scholtus et al.

(2014) believe that algorithmic trading has sig-

nificant effects on improving market efficiency,

increasing liquidity and reducing transaction

costs of large positions.

However, improper use of algorithmic trad-

ing may lead to large consumption of market

liquidity and a substantial increase in market

volatility in a short period, bringing certain

risks to the market and even triggering a huge

crisis. The Flash Crash in the US stock mar-

ket in 2010 and the fat finger accident of Ever-

bright Securities in China in 2013 have proved

this point, which causes the stock price to fluc-

tuate greatly in a short period. Therefore, the

in-depth study of algorithm trading is particu-

larly essential.

One of the core concerns of algorithmic

trading is the short-term execution of the large

positions of investors in financial markets. Due

to the limited market liquidity, the immediate

trading of large positions will inevitably im-

pact the prices of risky assets, thus increasing

transaction costs. Therefore, investors need to

split their positions into small orders that can

be executed in batches. However, such the split

order transaction will prolong the transaction

time and thus increase the risk due to uncer-

tain volatility. Therefore, a good liquidation

strategy must balance the transaction costs and

risks.

Many models have been developed in the

studies of market price impact and optimal ex-

ecution strategies. The first-class models in-

clude the mean-variance models (Almgren and

Chriss 1999 2000), which assume that the as-
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set price process obeys the arithmetic Brown-

ian motion. The price impact in the trading

process can be divided into two parts: the per-

manent price impact and the temporary price

impact. The optimal solution to this kind of

model seeks a balance between minimizing

the price impact and minimizing the time risk.

The cost functions include the following three

kinds. The first minimizes the risk criterion,

such as using the variance (Engle and Fersten-

berg 2007, Forsyth et al. 2012), the quadratic

variation (Almgren and Chriss 2000) or the

value at risk (VaR) (Gatheral and Schied 2013)

as the risk measurement to obtain the optimal

strategy. The second is the utility function cri-

terion, such as using the power function or ex-

ponential function (He and Mamaysky 2005,

Schied and Schoneborn 2009) as the utility

function and maximizing it to obtain the op-

timal execution strategy. The third minimizes

the expectation of execution cost. This criterion

minimizes the expected cost by constructing a

model to characterize the dynamic properties

of the bid orders and the ask orders (Bertsimas

and Lo 1998, Alfonsi et al. 2010, Obizhaeva

and Wang 2013).

The second-class models based on the

Bertsimas-Lo model Bertsimas and Lo (1998)

assume that the asset price process obeys the

geometric Brownian motion and the optimal

liquidation strategies need to be solved by dy-

namic programming method. Forsyth et al.

(2012) established the HJB equation of the op-

timal execution problem under the expected

returns and quadratic variation criteria and

analyzed the optimal liquidation strategy of a

portfolio based on the HJB equation.

The third-class models based on the limited

order book (LOB) model assume that the price

impact produced by transactions has attenuat-

ing effect on the price. That is, the price impact

can be regarded as a nonlinear time-varying

function of the transaction volume. The per-

manent price impact and temporary price im-

pact are two special cases of the function. The

optimal execution problem under this assump-

tion has been widely discussed (Gatheral 2010,

Obizhaeva and Wang 2013, Alfonsi et al. 2012,

Gatheral et al. 2012).

In a recent paper, Jin (2017) proposed the

loss probability (the probability that the ac-

tual liquidation cost is higher than a given

value) utility function based on the transaction

cost model that was proposed by Almgren and

Chriss (2000). The author derived the asymp-

totic solution for the liquidation model with-

out a time constraint and gave the numerical

solution considering a time constraint. The in-

adequacy of this study is that the article only

considered the optimal liquidation of a single

asset.

However, in a real trading environment,

institutional investors such as mutual funds

rarely hold only one risky asset for trading,

but usually hold multiple risky assets or sev-

eral portfolios. To earn profits or avoid risks,

they need to liquidate them within a specified

period. Different from transactions in the case

of a single asset, due to the possible correlation

between multiple assets, making a strategy for

each asset alone may not achieve the desired

liquidation effect. Therefore, this correlation

has to be taken into account when formulat-

ing liquidation strategies for multiple assets.

This paper establishes the correlation between

assets by setting the Brownian motion process

and the market impact process of assets and

extends the Jin (2017) model to a multidimen-

sional model to consider the optimal liquida-

tion of a portfolio.

The rest of this paper is as follows. The sec-

ond part establishes a multi-asset framework

and discusses the properties of the asymptotic

solution and numerical solution of a portfolio.
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The third part gives the simulation results of a

portfolio liquidation problem. The last part is

the conclusion.

2. Optimal Liquidation Strategy for
Multi-asset

2.1 Multi-asset Liquidation Cost Model
Assuming that an institutional investor holds

M kinds of risky assets, the initial positions of

the assets can be expressed as the vectorx0 �(
x1

0
, x2

0
, . . . , xM

0

)′
, and the initial price vector

is S0 �
(
S1

0
, S2

0
, . . . , SM

0

)′
. The investor needs

to liquidate all assets within T � Nτ, where

τ is the unit time. At time kτ, we de-

fine the positions of the multiple assets as

xk �

(
x1

k , x
2
k , . . . , x

M
k

)′
, where x j

k′ , 1 ≤ k ≤
N, 1 ≤ j ≤ M, denotes the amount of re-

maining position of the jth asset, and the

boundary condition is xN � 0. During the

period (kτ, (k + 1)τ), the liquidation strategy

of the asset is nk �

(
n1

k , n
2
k , . . . , n

M
k

)′
, where

n j
k , 1 ≤ k ≤ N, 1 ≤ j ≤ M, denotes the amount

of the jth asset liquidated during this period.

Obviously, there is a recursive relationship be-

tween xk and nk as follows:

nk � xk−1 − xk , 1 ≤ k ≤ N

It is generally assumed that the basic price

process St of M-dimensional assets obeys the

M-dimensional arithmetic Brownian motion

for convenience of the analysis. We assume

that the permanent price impact function is

linear in terms of the number of shares that are

traded. The permanent price impact of a sin-

gle stock not only has a lasting influence on its

future price but also on the prices of the other

stocks in the portfolio. Furthermore, we as-

sume that the temporary price impact function

has a linear relationship with the liquidation

quantity of a single stock in a period. Besides,

the temporary impact only affects the current

transaction of the stock and does not affect the

other stocks in the portfolio. Therefore, at time

kτ, the asset price vector Sk can be expressed

as

Sk � Sk−1 + στ
1
2 ξk − g (nk) (1)

where σ represents the volatility matrix, which

is defined as a lower triangular matrix. In addi-

tion, the covariance matrix of M-dimensional

assets is Σ � σσ′, which is a positive definite

matrix. ξk is a M-dimensional random vec-

tor that is composed of M independent and

identically distributed standard normal ran-

dom variables, and g(·) is the permanent im-

pact function.

We define h(·) as the temporary price im-

pact function and the actual execution price

of the portfolio in period (kτ, (k + 1)τ) can be

expressed as

S̃k � Sk−1 − h (nk) (2)

Then, we substitute equation (1) into equa-

tion (2) and deduce

S̃k � S0 +

k−1∑
j�1

στ
1
2 ξ j −

k∑
j�1

h (nk) − g (nk) (3)

To facilitate the analysis of this problem, we

further assume that

g (nk) � λnk

h (nk) � vnk

where λ �
(
λi j ) ∈ RM∗M is the perma-

nent price impact coefficient matrix, v �

diag
(
v1 , v2 , · · · , vM ) is the temporary price

impact coefficient matrix.

We define the liquidation cost of the port-

folio as C, which can be expressed as

C � x′0S0 −
N∑

k�1

n′k S̃k

Therefore, we can give the expression of the

liquidation cost and its expectation and vari-

ance.
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Lemma 1 The expression of the portfolio liquida-
tion cost C is

C � −τ 1
2

N∑
k�1

x′kσξk +
1

2
x′0λx0+ (4)

N∑
k�1

(xk−1 − xk)′
(
v − 1

2
λ

)
(xk−1 − xk)

Proof.

C � x′0S0 −
N∑

k�1

n′k S̃k

� x′0S0 −
N∑

k�1

n′kS0 −
N∑

k�1

n′k
k−1∑
i�1

στ
1
2 ξi

−
N∑

k�1

n′kλ
k∑

i�1

ni +

N∑
k�1

n′k vnk

� −
N∑

k�1

x′kστ
1
2 ξk −

N∑
k�1

(xk−1 − xk)′ λ
k∑

i�1

ni

+

N∑
k�1

n′k vnk

� −
N∑

k�1

x′kστ
1
2 ξk

−
N∑

k�1

(xk−1 − xk)′ λ (x0 − xk−1)

+

N∑
k�1

(xk−1 − xk)′ v (xk−1 − xk)

� −τ 1
2

N∑
k�1

x′kσξk +
1

2
x′0λx0+

N∑
k�1

(xk−1 − xk)′
(
v − 1

2
λ

)
(xk−1 − xk)

�

From the above deduction, we can see that

the liquidation cost C is the function of the

volatility matrix σ, the permanent price impact

coefficient matrix λ and the temporary price

impact coefficient matrix v. It means that the

liquidation cost is affected by the correlation

between the different assets.

Furthermore, the liquidation cost C is a ran-

dom variable, so its expectation and variance

can be easily obtained.

Lemma 2 The expectation μC and variance σ2
C of

the portfolio liquidation cost C can be respectively
expressed as

μC �
1

2
x′0λx0+ (5)

N∑
k�1

(xk−1 − xk)′
(
v − 1

2
λ

)
(xk−1 − xk)

σ2
C � τ

N∑
k�1

x′kσσ
′xk (6)

From equation (6), we can see that the vari-

ance is the quadratic form of the execution

strategy.

Proof. From equation (4), the liquidation cost

C can be regarded as a function of the ran-

dom variable ξ, therefore, equation (5) is es-

tablished. Its variance can be revealed as

σ2
C � E

[
C − μC

]2
(7)

� E

[
−

N∑
k�1

x′kστ
1
2 ξk

]2

� τ
N∑

k�1

E
[
x′kσξk

] [
x′kσξk

] ′
� τ

N∑
k�1

E
[
x′kσξkξ

′
kσ

′xk
]

� τ
N∑

k�1

x′kσσ
′xk

�

2.2 Optimal Liquidation Strategy Model
under Loss Probability Measure

Jin (2017) proposed a loss function measure

as the utility function of an asset liquida-

tion based on the Almgren and Chriss (2000)
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model. The optimal liquidation strategy model

can be given as follows:

min P
(
Cn(N) > b

)
s.t.

N∑
k�1

nk � X

nk ≥ 0, 1 ≤ k ≤ N

where N is the length of the liquidation, X is

the number of assets to be liquidated, nk is

the number of positions to be liquidated dur-

ing the period (kτ, (k + 1)τ), nk ≥ 0 represents

a pure selling strategy, b is a given threshold

of the liquidation cost, Cn(N) is the liquidation

cost under the liquidation strategy n(N), and

P
(
Cn(N) > b

)
is the loss probability that the

actual liquidation cost is higher than the given

threshold. We can obtain the liquidation strat-

egy by minimizing the loss probability.

Based on Jin (2017)’s work, we extend the

optimal execution strategy model to the multi-

asset case. Next, we will discuss several typical

liquidation strategies, which are the uniform

order strategy known as the naive execution

strategy in Almgren and Chriss (2000) and

elsewhere as the simple strategy, the final or-

der strategy and the initial order strategy. In

addition, we will give the cost expectations and

cost variances of the corresponding strategies.

Lemma 3 The uniform order strategy n(k) �(
x1

0

N , . . . ,
xM

0

N

)′
has the minimum expectation of the

liquidation cost, which is denoted as μC,min:

μC,min

�
1

2
x′0λx0+

N∑
k�1

(
x1

0

N
, . . . ,

xM
0

N

) (
v − 1

2
λ

) (
x1

0

N
, . . . ,

xM
0

N

)′
�

1

2
x′0λx0 +

1

N
x′0

(
v − 1

2
λ

)
x0

Lemma 4 If all positions are liquidated in the last

period, the liquidation strategy is as follows:{
n(N) � (x1

0
, x2

0
, . . . , xM

0

)′
n(k) � (0, . . . , 0)′, ∀k ∈ {1, . . . ,N − 1}

The corresponding variance of the liquidation cost
is the largest, which is denoted as σ2

C,max
:

σ2
C,max � τNx′0σσ

′x0

Lemma 5 If all positions are liquidated in the first
period, the liquidation strategy is as follows:{

n(1) � (x1
0
, x2

0
, . . . , xM

0

)′
n(k) � (0, . . . , 0)′, ∀k ∈ {2, . . . ,N}

The corresponding variance of the liquidation cost
is the smallest, which is denoted as σ2

C,min
:

σ2
C,min � 0 (8)

For a given threshold b, the loss probability

is defined as the probability that the liquida-

tion cost exceeds the threshold b , which is de-

fined as P(C > b). since the liquidation cost C
is a random variable with the expectation of μC

and the variance of σ2
C obeying a normal distri-

bution, the loss probability can be transformed

as

P(C > b) � 1 −Φ
(

b − μC

σC

)
(9)

where Φ is the standard normal cumulative

distribution. The optimization goal of the

model is to minimize the loss probability.

Therefore, the optimization model can be writ-

ten as

min P(C > b) (10)

s.t.

N∑
k�1

n j
k � x j

0
, 1 ≤ j ≤ M

n j
k ≥ 0, 1 ≤ k ≤ N, 1 ≤ j ≤ M

Combined with equation (9), the objec-

tive of the optimization model is equivalent to

maximizing Φ(z), which means to maximize
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z. Therefore, the optimization model can be

rewritten as follows:

min−z ,

s.t. zσ2
C + μC − b ≤ 0

−x ≤ 0

−n j
k ≤ 0, 1 ≤ k ≤ N, 1 ≤ j ≤ M

N∑
k�1

n j
k � x j

0
, 1 ≤ j ≤ M

2.3 Optimal Liquidation Strategy Without
Time Constraints

In this part, we will discuss the optimal liqui-

dation strategy without time constraints. We

record the optimal liquidation strategy as n(∗)
and the corresponding minimum loss proba-

bility as P∗b , which can be expressed as

n(∗) � arg min
n�(n1 ,n2 ,··· ,nN )

P(C > b)

P∗b � min
n�(n1 ,n2 ,··· ,nN )

P(C > b) � P
(
Cn(∗) > b

)
From Lemma 1 we assume that the last

item
∑N

k�1 (xk − xk+1)′
(
v − 1

2λ
) (xk − xk+1) of

the liquidation cost in equation (4) is greater

than 0, that is,
∑N

k�1 (xk − xk+1)′
(
v − 1

2λ
) (xk−

xk+1) > 0, which also implies that the ma-

trix
(
v − 1

2λ
)

is positive definite. Conversely,

when
∑N

k�1 (xk − xk+1)′
(
v − 1

2λ
) (xk − xk+1) <

0, in order to minimize the loss probabil-

ity, the optimal liquidation strategy is to liq-

uidate all assets in the first period. When∑N
k�1 (xk − xk+1)′

(
v − 1

2λ
) (xk − xk+1) � 0, the

expectation of the liquidation cost is not re-

lated to the choice of the liquidation strategy,

and thus μC �
1
2 x′

0
λx0.

With
∑N

k�1 (xk − xk+1)′
(
v − 1

2λ
) (xk − xk+1) >

0, according to threshold b , the optimal liq-

uidation strategy is chosen as follows. When

b ≥ 1
2 x′

0
λx0 , the optimal strategy corresponds

to Lemma 5 in which the variance of the

cost is 0 and the loss probability is 0. When

b < 1
2 x′

0
λx0 the optimal strategy corresponds

to Lemma 4 in which the liquidation cost

variance reaches the maximum and the loss

probability will be greater than 0.5.

Using the Lagrange multiplier and Karush-

Kuhn-Tucker (KKT) conditions, the boundary

conditions that are satisfied by the liquida-

tion strategy of multidimensional assets can

be given by Theorem 1.

Theorem 1 The boundary condition of optimiza-
tion problem (10) is∑M

j�1

(
2v j −∑M

l�1 λ
jl
) (

n j
k+1

− n j
k

)
∑M

j�1 σ
j j2 x j

k

(11)

� − b − μc∑N
k�1 x′kσσ′xk

Proof. By using the Lagrange multiplier

θ j(1 ≤ j ≤ M) and θ
j
i (1 ≤ j ≤ M and 1 ≤ i ≤

N), the optimal liquidation strategy n(∗)
needs to maximize the following equation:

P(C < b) +
M∑
j�1

θ j
(
n j

1
+ · · · + n j

N − x j
0

)
+

N∑
i�1

M∑
j�1

θ
j
i n j

i

where P(C < b) is

P(C < b) � 1√
2π

∫ z

−∞
e−
ξ2

2 dξ

The upper limit of the integral is z �
b−μC
σC

. Us-

ing the Leibniz formula calculates ∂P
∂n j

i

as fol-

lows:

∂P

∂n j
i

�
1√
2π

e−
z2

2
∂z

∂n j
i

�
1√
2π

e−
z2

2

√
V ∂μ

∂n j
i

− 1
2 Z ∂V
∂n j

i

V

where V � σ2
C . In addition, by setting μ � μC ,
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we can calculate
∂μ

∂n j
i

and ∂V
∂n j

i

as

μC �
1

2
x′0λx0+

N∑
k�1

(xk − xk+1)′
(
v − 1

2
λ

)
(xk − xk+1)

μ �

N∑
k�1

M∑
j�1

x j
k

M∑
l�1

λ jl n j
k +

N∑
k�1

n′k vnk

By setting F �
∑N

k�1

∑M
j�1 x j

k

∑M
l�1 λ

jl n j
k , we

can obtain

∂F

∂n j
i

�

N∑
k�1

M∑
j�1

∂x j
k

∂n j
i

M∑
l�1

λ jl n j
k

+

N∑
k�1

M∑
j�1

x j
k

∂
∑M

l�1 λ
jl n j

k

∂n j
i

�

M∑
j�1

i−1∑
k�1

M∑
l�1

λ jl n j
k +

M∑
j�1

N∑
k�i+1

M∑
l�1

λ jl n j
k

Then, by setting H �
∑N

k�1 n′k vnk �∑M
j�1

∑N
k�1 v j n j2

k , it can be given by

∂H

∂n j
i

� 2

M∑
j�1

v j n j
i

Therefore,

∂μ

∂n j
i

�

M∑
j�1

i−1∑
k�1

M∑
l�1

λ jl n j
k +

M∑
j�1

N∑
k�i+1

M∑
l�1

λ jl n j
k

+ 2

M∑
j�1

v j n j
i

�

M∑
j�1

M∑
l�1

λ jl x j
0
+

M∑
j�1

(
2v j −

M∑
l�1

λ jl

)
n j

i

According to V � τ
∑N

k�1 x′kσσ
′xk , we can

obtain

∂V

∂n j
i

�
∂V
∂xk

∂xk

∂n j
i

Furthermore, we can get ∂V
∂xk

�

2τ
∑N

k�1 σσ
′xk . In addition, considering

xk �

(∑N
r�k+1 n1

r ,
∑N

r�k+1 n2
r , . . . ,

∑N
r�k+1 nM

r

)′
, it

can be deduced that

∂xk

∂n j
i

�

(
∂
∑N

r�k+1 n1
r

∂n j
i

, · · · , ∂
∑N

r�k+1 n j
r

∂n j
i

, · · · ,

∂
∑N

r�k+1 nM
r

∂n j
i

)′

�

�����0, · · · , 0︸���︷︷���︸
j−1 items

,
∂
∑N

r�k+1 n j
r

∂n j
i

, 0, · · · , 0︸���︷︷���︸
M− j items

�����
′

By substituting the former equation into
∂V
∂n j

i

�
∂V
∂xk

∂xk

∂n j
i

, we have

∂V

∂n j
i

� 2τ
N∑

k�1

σσ′xk

�����0, · · · , 0︸���︷︷���︸
j−1 items

,
∂
∑N

r�k+1 n j
r

∂n j
i

,

0, · · · , 0︸���︷︷���︸
M− j items

)′

� 2τ
i−1∑
k�1

M∑
j�1

σ j j2

x j
k � 2τ

i−1∑
k�1

M∑
j�1

σ j j2

x j
k

According to the KKT condition ∂P
∂n j

i

�
∂P
∂n j

i+1

,

we can get the following result that

√
V
∂μ

∂n j
i+1

− 1

2
z
∂V

∂n j
i+1

�
√

V
∂μ

∂n j
i

− 1

2
z
∂V

∂n j
i

where

∂μ

∂n j
i+1

− ∂μ
∂n j

i

�

M∑
j�1

(
2v j −

M∑
l�1

λ jl

) (
n j

i+1
− n j

i

)

∂V

∂n j
i+1

− ∂V
∂n j

i

� 2τ
i∑

k�1

M∑
j�1

x j
kσ

j j − 2τ
i−1∑
k�1

M∑
j�1

x j
kσ

j j

� 2τ
M∑
j�1

x j
i σ

j j

With μ � μc , the following equation can be
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obtained.∑M
j�1

(
2v j −∑M

l�1 λ
jl
) (

n j
k+1

− n j
k

)
∑M

j�1 σ
j j2 x j

k

� − b − μc∑N
k�1 x′kσσ′xk

�

Theorem 1 can be further discussed as fol-

lows.

By settingω j � 2v j−∑M
l�1 λ

jl , equation (11)

can be given as∑M
j�1 ω

j
(
n j

k+1
− n j

k

)
∑M

j�1 σ
j j2 x j

k

� − b − μc∑N
k�1 x′kσσ′xk

(12)

When a portfolio consists of one asset, with

equation (12), we can get the following:

nk+1 − nk

xk
�

b − μc

(2v − λ)∑N
k�1 x2

k

The above equation is the result given by

Jin(2017) and the optimal liquidation strategy

for a single asset can be obtained.

For multi-asset or portfolio situations, by

observing the two sides of (12), we note that

the left side of the equation is the ratio of

two weighted sums. One is the weighted

sum of the liquidation quantity difference be-

tween the period ((k + 1)τ, (k + 2)τ) and the

period (kτ, (k + 1)τ) of M−assets (the weights

are ({ω j
}
, where j � 1, · · · ,M), and another

one is the weighted sum of the remaining po-

sitions of M−assets at time k (the weights are{
σ j j2
}
, j � 1, · · · ,M). On the right side of the

equation is the ratio of the difference between

the cost threshold and the expected value of

the liquidation cost and the quadratic form of

the remaining positions in each period of the

liquidation strategy. This implies that the ratio

on the left of equation (12) is constant for the

optimal liquidation strategy n(∗). Therefore,

we use a constant D to express the left side of

the equation as follows:

D �

∑M
j�1 ω

j
(
n j

k+1
− n j

k

)
∑M

j�1 σ
j j2 x j

k

(13)

With
∑M

j�1 σ
j j2

x j
k > 0,

∑M
j�1 ω

j n j
k increases

or decreases monotonously. The monotony of

the total number of liquidated positions in each

period depends on the cost threshold. The

range of the values of n j
k is closed and bounded,

that is,
∑M

j�1 n j
k � x j

0
and n j

k ≥ 0. Therefore,

there is an optimal liquidation path to mini-

mize the loss probability P.

From equation (13), we have

M∑
j�1

(
2ω j − Dσ j j2

)
x j

k �

M∑
j�1

ω j x j
k+1

+

M∑
j�1

ω j x j
k−1

(14)

Assuming that all individual assets si-

multaneously satisfy the marginal conditions

when equation (14) is established. That is, for

all j, where j � 1, · · · ,M, the following equa-

tions hold(
2ω j − Dσ j j2

)
x j

k � ω j x j
k+1

+ ω j x j
k−1

(15)

(
2 − Dσ j j2

ω j

)
x j

k � x j
k+1

+ x j
k−1

(16)

By setting R � 2 − Dσ j j2

ω j , we have 2ω j −
Dσ j j2

� Rω j ,which means that there is a linear

relationship between the price impact of the jth
asset price and its variance σ j j2

as follows:

σ j j2

�
2 − R

D

(
2v j −

M∑
l�1

λ jl

)
(17)

Therefore, equation (14) can be expressed as

R
M∑
j�1

ω j x j
k �

M∑
j�1

ω j x j
k+1

+

M∑
j�1

ω j x j
k−1

(18)
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By setting
∑M

j�1 y j
k �

∑M
j�1 ω j x

j
k , the above

equation is rewritten as follows:

M∑
j�1

y j
k+1

− R
M∑
j�1

y j
k +

M∑
j�1

y j
k−1

� 0 (19)

Equation (19) can be considered as a

second-order difference equation with regard

to the series
∑N

j�1 y j
k , and the boundary

conditions satisfy
∑M

j�1 y j
0

�
∑M

j�1 ω
j x j

0
and∑M

j�1 y j
N �

∑M
j�1 ω

j x j
N � 0. Thus, we can get

the following results.

Theorem 2 Suppose that b < μC,min, thus,∑M
j�1 y j

k increases monotonously and D �

2−R
σ j j2
ω j > 0. Then, we have

M∑
j�1

ω j n j
k �

M∑
j�1

ω j x j
0

(
cos

(k − 1)π
2N

− cos
kπ
2N

)
(20)

Proof. We have the following:

M∑
j�1

y j
k+1

− R
M∑
j�1

y j
k +

M∑
j�1

y j
k−1

� 0

Therefore,
∑M

j�1 y j
k satisfies a linear dif-

ference equation, and the boundary condi-

tions are
∑M

j�1 y j
0
�
∑M

j�1 ω
j x j

0
and

∑M
j�1 y j

N �∑M
j�1 ω

j x j
N � 0. With D > 0, we can solve the

above equation and get the following (Kelley

and Peterson 2000, Jin 2017):

M∑
j�1

y j
k �

M∑
j�1

y j
0

cos
kπ
2N

Further,

M∑
j�1

y j
k−1

−
M∑
j�1

y j
k

�

M∑
j�1

y j
0

(
cos

(k − 1)π
2N

− cos
kπ
2N

)
Then, we can get

M∑
j�1

ω j n j
k �

M∑
j�1

ω j x
j
0

(
cos

(k − 1)π
2N

− cos
kπ
2N

)
�

Theorem 3 Suppose that b > μc ,min, thus,∑M
i�1 y j

k decreases monotonously and D �

2−R
σ j j2
ω j < 0. Then, we can get

M∑
j�1

ω j x j
k �

Bk − B2N−k

1 − B2N

M∑
j�1

ω j x j
0

(21)

where B �
R−√R2−4

2 .

Proof. μc ,min is the expected liquidation cost

under the strategy n(k) �
(

x1
0

N , . . . ,
xM

0

N

)′
,where

∀k ∈ {1, . . . ,N}. With b > μC,min , the loss

probability is less than 0.5 that is, P(C > b) <
0.5. Under the given conditions, there is a n(∗)
that satisfies P

(
Cn(∗) > b) ≤ P(C > b) < 0.5.

With b − μ(∗)c ,min > 0, we can get D < 0 as

follows under the optimal liquidation strategy

n(∗) :

D �

∑M
j�1 ω

j
(
n j

k+1
− n j

k

)
∑M

j�1 σ
j j2 x j

k

< 0

By solving the difference equation, we have

M∑
j�1

ω j x j
k �

Bk − B2N−k

1 − B2N

M∑
j�1

ω j x j
0

�

Theorem 2 and Theorem 3 give the opti-

mal liquidation path based on loss probability

respectively.

2.4 Optimal Strategy under Constrained
Conditions

According to Theorem 3, we obtain the equa-

tion between the remaining position to be liqui-

dated and the total initial position of a portfolio

at a period. Generally, the asymptotic solution

form is difficult to obtain. Therefore, it is nec-

essary to constrain the permanent and tempo-

rary price impact coefficient matrixes and the

volatility matrix to obtain the asymptotic solu-

tion under the constraints.
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2.4.1 Asymptotic Solutions with Constraints
With equation (17), equation (12) can be sim-

plified to

D
2 − R

∑M
j�1 ω

j
(
n j

k+1
− n j

k

)
∑M

j�1 ω j x
j
k

� − b − μc∑N
k�1 x′kσσ′xk

(22)

It can be regarded as the liquidation of the port-

folio with weight ω j , where j � 1, · · · ,M. Let∑M
j�1 ω j x

j
k � x̃k and

∑M
j�1 ω j n

j
k � ñk , then the

above equation can be represented as follows:

D
2 − R

ñk+1 − ñk

x̃k
� − b − μC∑N

k�1 x′kσσ′xk
(23)

Let D′ �
ñk+1−ñk

x̃k
, thus, R � 2 − D′ and B �

2−D′−√D′2−4D′
2 . With D′ > 0, equation (20) can

be simplified to

ñk � x̃0

(
cos

(k − 1)π
2N

− cos
kπ
2N

)
With D′ < 0, equation (21) can be simplified to

x̃k �
Bk − B2N−k

1 − B2N x̃0

On this basis, there is the following theorem.

Theorem 4 Assume that ω j > 0, where j �

1, · · · ,M. There is an asymptotic solution n∗(∞)
as follows:

ñk � Bk−1(1 − B)x̃0 (24)

where B �
R−√R2−4

2 .

Proof. With b > 1
2 x′

0
λx0 , there is L0 for any

L ≥ L0 that satisfies

b >
1

2
x′0λx0 +

1

L
x′0

(
v − 1

2
λ

)
x0

Therefore, for any L ≥ L0, there

is an optimal strategy ñ∗ such that

ñk(N) � x̃k−1(N) − x̃k(N) and x̃k(N) �

B̃k
N−B̃2N−k

N
1−B̃2N

N
x̃0(N), where B̃N �

2−D̃′
N−
√

D̃2
N−4D̃N

2 ,

where D̃′
N �

ñk+1(N)−ñk (N)
x̃k (N) � −(1−B̃N)2

B̃N
. It can

be seen that B̃k
N and D̃′

N are variables that

are related to N . Therefore, the variance of

the liquidation cost of a linear combination of

assets can be written as

Ṽ[C] � τσ2
ω

N∑
k�1

x̃2
k(N)

� τσ2
ω x̃2

0(N)
[ (

B̃2
N − B̃2N

N

) (
1 + B̃2N

N

)(
1 − B̃2

N

) (
1 − B̃2N

N

)2
−(N − 1)B̃2N

N(
1 − B̃2N

N

)2 ]
Here, σ2

ω � ω′σσ′ω, where ω �
(
ω1 , · · · , ωM )′,

representing the weights of the assets.

Since Ṽ[C] is a monotonic increasing func-

tion of N, for a given liquidation variance

Ṽ[C], B̃N decreases as N increases. Because

B̃N ∈ (0, 1) is monotonous and bounded, then

B̃N → B when N →∞.

We prove limN→∞ B̃N
N � 0 and

limN→∞ NB̃2N
N � 0 in the following. For

a large N, the following inequalities hold:

ñk(N) � x̃k−1(N) − x̃k(N) (25)

�

(
1 − B̃N

) (
1 + B̃2N−1

N

)
1 − B̃2N

N

x̃0(N)

>
1

N
x̃0(N)

ñk(N) � x̃k−1(N) (26)

�
B̃N−1

N

(
1 − B̃2

N

)
1 − B̃2N

N

x̃0(N)

<
1

N
x̃0(N)

For equation (25), we have 1 − B̃N >
1
N

1−B̃2N
N

1+B̃2N−1
N
. Then, the left side approaches 1 − B

and the right side approaches 0 as N →
∞. This implies that B̃N → B < 1 and

limN→∞ B̃N
N � 0.

For equation (26), we have NB̃2N
N <

B̃N+1
N (1−B̃2N

N )
1−B̃2

N
. Because NB̃2N

N > 0, B̃N+1
N → 0

and B̃2N
N → 0 as N → ∞, limN→∞ NB̃2N

N � 0.
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Therefore, by letting x̃k � limN→∞ x̃k(N) and

ñk � limN→∞ ñk(N), we can get

x̃k � Bk x̃0

ñk � lim
N→∞ x̃k−1(N) − lim

N→∞ x̃k(N)
� Bk−1(1 − B)x̃0

�

Theorem 4 shows that the portfolio liqui-

dation strategy without time constraints can

be expressed as a geometric distribution func-

tion of the liquidation position. In addition,

because of the geometric distribution, this liq-

uidation path implies no memory. That is, the

liquidation path of the remaining position has

nothing to do with the previous liquidation ac-

tions.

2.4.2 Numerical Solutions with Constraints
To calculate the multi-asset optimal liquidation

strategy under a time constraint, we improve

the methods of the one-dimensional model in

Jin (2017). According to the derivation process

of the asymptotic solution, the numerical so-

lution method can be given. The process is as

follows.

The threshold b satisfies

b >
1

2
x′0λx0 +

1

N
x′0

(
v − 1

2
λ

)
x0

The numerical model is solved as follows.

Step 1: Assign an initial value for D′, for

example, we can let D′
0
� −0.01.

Step 2: For i ≥ 1, Bi is updated by

Bi �
2 − D′

i−1
−
√

D′2
i−1

− 4D′
i−1

2

Step 3: For 1 ≤ k ≤ N ,
∑M

j�1 x j
k (Bi) is ob-

tained by

M∑
j�1

x j
k (Bi) �

Bk
i − B2N−k

i

1 − B2N
i

M∑
j�1

x j
0

Step 4: For 1 ≤ k ≤ N ,
∑M

j�1 n j
k (Bi) is calcu-

lated by

M∑
j�1

n j
k (Bi) �

M∑
j�1

x j
k−1

(Bi) −
M∑
j�1

x j
k (Bi)

Step5: Calculate μc (N, Bi) and σ2
C (N, Bi)

via

μC (N, Bi) � 1

2
x′0λx0 +

N∑
k�1

n′k

(
v − 1

2
λ

)
nk

σ2
C (N, Bi) � τ

N∑
k�1

x′kσσ
′xk

Step6: Calculate D′ via

D′
�

ñk+1 − ñk

x̃k

For a specific accuracy tolerance e , if""D′
i − D′

i−1

"" ≤ e , the process stops and the op-

timal strategy is obtained. Otherwise, repeat

the process starting from step 2.

3. Simulation Analysis
3.1 Basic Model
Consider that an institutional investor needs

to liquidate a portfolio of two assets and as-

sume that the liquidation ratios of two assets

are the same. We can obtain the optimal liqui-

dation strategy of the portfolio by the numeri-

cal method and conduct sensitivity analysis for

the different parameters.The initial parameters

of the model are set as shown in Table 1.

In addition, assume that the initial position

vector of two assets is x0 � (1000000, 500000)′
and the volatility matrix is

σ �

(
0.2 0

0.15 0.2

)
The permanent price impact coefficient matrix

λ and the temporary price impact coefficient

matrix v need to satisfy 2v j − ∑M
l�1 λ

jl � ω j ,

where ω j , j � 1, 2, is the weight. We set

λ �

(
1.0E − 8 2.0E − 9

2.0E − 9 1.0E − 8

)
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Table 1 Setting of Parameters

Variable Index Value

M Number of assets 2

N Liquidation time 5

τ Liquidation interval 1

v �

(
1.0E − 7 0

0 1.0E − 8

)
Then, we can get ω �

(
ω1 , ω2

)′
� (2.0E −

7, 1.0E− 8)′. The lower bound of threshold b is

3.08E + 06. We set the threshold b as 2.5E + 7,

and the optimal liquidation strategy is numer-

ically obtained as follows:

n j
� (53.66%, 25.00%, 11.80%, 5.90%, 3.64%)x j

0

j � 1, 2

Hence, we can get that the liquidation cost ex-

pectation is 5072256, the variance is 1.079E+14,

and the loss probability is 0.028.

3.2 Analysis of the Impact of Liquidation
Cost Threshold

The threshold of liquidation cost reflects the

sensitivity of investors to price impact. The

higher the threshold is, the more likely in-

vestors are to ignore the impact, indicating that

investors prefer complete liquidation in a con-

cise time at the beginning of the liquidation

process. We set threshold b to change from

5.0E+06 to 5.0E+07, and the optimal liquida-

tion proportion is calculated according to the

numerical model. The results are shown in

Figure 1.

In Figure 1, the x-axis is the liquidation cost

threshold, and the y-axis represents the alloca-

tion, that is, the liquidation proportion of the

initial position. We set the liquidation time as

five units, including n1 to n5.

As seen from Figure 1, with the increase

of the threshold, the liquidation proportion of

the position in the first period increases con-

tinuously. When the threshold increases from

5.0E+06 to 5.0E+07, the liquidation proportion

of the position in the first period rises from

24.07% to 69.00%. The liquidation proportion

in the second period increases first and then

decreases. When the threshold is 2.0E+07,

the liquidation proportion in the second pe-

riod reaches 25.25%, and when the threshold

increases to 5.0E+07, the proportion drops to

21.40%. Furthermore, the liquidation propor-

tions of the third, fourth and fifth periods de-

crease as the threshold increases. When the

threshold increases from 5.0E+06 to 5.0E+07,

the three ratios decrease by 12.64%, 15.88% and

16.52%, respectively.

Table 2 shows the loss probability, expecta-

tion and variance of the liquidation cost under

the optimal strategy when the liquidation cost

threshold changes. With the increase in the

threshold, the loss probability and the variance

decrease and the expectation increases.

3.3 Analysis of the Impact of Liquidation
Time

To intuitively reflect the influence of the length

of liquidation N on the optimal liquidation

strategy, we set b � 8.0E + 06 and give the

optimal liquidation paths when the length of

liquidation N varies from 4 to 10. Meanwhile,

we compare them with the path when the time

tends to infinity. The results are shown in Fig-

ure 2.

In Figure 2, the x-axis represents the liqui-

dation time, and the y-axis represents the liq-

uidation proportion. Each curve corresponds

to the optimal liquidation proportion and loss

probability under different liquidation time

lengths. It can be seen that with the in-
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Figure 1 Relationship between the Liquidation Strategy and Liquidation Cost Threshold

Table 2 The Impact of a Threshold Change on the Liquidation Strategy

Threshold Loss probability Expectation Variance

5.0E+06 0.443 3.1E+06 1.7E+14

1.0E+07 0.293 3.5E+06 1.4E+14

1.5E+07 0.164 4.0E+06 1.3E+14

2.0E+07 0.075 4.6E+06 1.2E+14

2.5E+07 0.028 5.1E+06 1.1E+14

3.0E+07 0.008 5.5E+06 1.0E+14

3.5E+07 0.002 5.9E+06 1.0E+14

4.0E+07 0.000 6.3E+06 9.7E+13

4.5E+07 0.000 6.6E+06 9.5E+13

5.0E+07 0.000 6.9E+06 9.4E+13

Figure 2 Influence of the Change of the Liquidation Time N on the Liquidation Strategy
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crease of the liquidation time, the correspond-

ing loss probability under the optimal strategy

decreases. When the time tends to infinity, the

expression of liquidation strategy is as follows:

n j
k � 27.05%(1 − 27.05%)k−1x j

0
(27)

The expectation and variance of the liquidation

cost are 2.57E+06 and 1.82E+14 respectively,

and the corresponding loss probability is as

low as 0.3434.

3.4 The Impact of Volatility Change
Stock volatility is an important factor affecting

the liquidation strategy. When institutional in-

vestors liquidate multiple assets, different as-

sets may be affected jointly by the same volatil-

ity components, which must be considered

when formulating liquidation strategies. In

the simulation, the volatility matrix is changed

according to the data that are shown in Table 3

. For convenience, we set σ11 � σ22 � z(1) ∗ 0.2

and σ21 � z(2) ∗ 0.15. Then, we change the val-

ues of z(1) and z(2) and keep the other parame-

ters unchanged. Thus, the optimal liquidation

strategies can be obtained, as shown in Figure

3 and Figure 4.

The x and y axes in Figure 3 and Figure

4 show the values of z(1) and z(2), respec-

tively. The z-axis represents the optimal liq-

uidation proportion. The change of the color

of the surface from the light color to the dark

color means that the liquidation proportion de-

creases. In the first period, when σ11 � σ22

is unchanged, the optimal liquidation propor-

tion decreases as σ21 increases, and when σ21

keeps unchanged, the optimal liquidation pro-

portion decreases as σ11 increases. The optimal

liquidation proportions of the several remain-

ing periods increase as the volatility increases.

It means that with the increase of the volatility,

the optimal liquidation strategies should tend

to approach the simple strategy to balance the

liquidation shares in different periods.

Then, we show the effect of volatility on loss

probability through Figure 5 and Figure 6.

Figure 5 shows that the loss probability

generally increases with the increase of volatil-

ity. Figure 6 shows the loss probability curves

with different parameters: one sets z(1) � 1

and changes z(2) from 0.5 to 2, and the other

one sets z(2) � 1 and changes z(1) from 0.5 to

2. The x-axis in Figure 6 shows the value of

z(1) or z(2), and the y-axis is the loss probabil-

ity. It shows that when σ11 � σ22 � 0.2 and σ12

increases from 0.075 to 0.3, the loss probabil-

ity increases from 0.0148 to 0.0640, and when

σ12 � 0.15 and σ11 � σ22 increases from 0.1 to

0.4, the loss probability increases from 0.0010

to 0.1412. This result means that σ11 � σ22 has

a more significant effect on the loss probability

than σ21.

4. Conclusion
Based on the minimum loss probability crite-

rion, this paper discusses the optimal strategy

in the multi-asset liquidation problem. Our

work includes three parts: the model repre-

sentation, the theoretical derivation and the

computer simulation.

In the model representation part, we give

the framework of the multi-asset liquidation

problem based on the minimum loss probabil-

ity criterion and assume that the permanent

price impacts of assets will affect each other

while the temporary price impacts only affect

the assets themselves. Under the assumptions

of the linear price impact functions, we obtain

the expectation and variance of the liquidation

cost.

In the theoretical derivation part, we use

the Lagrange multiplier method and KKT con-

ditions to derive the boundary conditions that

are satisfied by the liquidation strategy of mul-

tidimensional assets and transform the multi-

asset liquidation problem into the portfolio liq-

uidation problem. On this basis, we derive
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Figure 3 Optimal Liquidation Proportion with the Volatility Matrix in the 1st Period

Figure 4 Optimal Liquidation Proportion with the Volatility Matrix in the 2nd − 5th Periods

Figure 5 Loss Probability Varies with the Volatility under the Optimal Liquidation Strategy
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Table 3 The Impact of a Threshold Change on the Liquidation Strategy

Variance Initial value Terminal value Fluctuation

z(1) 0.5 2 0.1

z(2) 0.5 2 0.1

Figure 6 Minimum Loss Probability Curves with Different Volatility Matrixes

the asymptotic solution of the optimal trad-

ing strategy when the liquidation time tends

to infinity and give a numerical solution for

the finite liquidation time.

In the simulation part, we give the optimal

liquidation paths of the portfolio composed of

two assets and conduct the sensitivity analysis

of the parameters in the model. The simula-

tion results are as follows. (1) With the increase

of the threshold, the liquidation proportion of

the position in the first period continuously

increases, which is due to the sensitivity of

the threshold to the price impact. The higher

the threshold is, the more that investors ignore

the price impact, which indicates that investors

prefer complete liquidation in a very short time

at the beginning of liquidation. (2) The volatil-

ity and loss probability are positively corre-

lated. With the increase in volatility, investor’s

strategy should tend to approach simple strate-

gies to balance the liquidation shares in differ-

ent periods. In addition, it is found that the

impact of the stock volatility on the loss proba-

bility is more significant than that of the related

volatility component.

The conclusions of this paper have some

limitations. First, the assumptions of the linear

impact functions are different from the actual

trading environment. Second, the asymptotic

solution and finite time solution of the optimal

trading strategy are given under the assump-

tions that the price impacts and variances of all

assets are linearly related in this paper, which

are too strict.
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