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The optimal incentive in promoting cooperation: punish the

worst and do not only reward the best

Abstract

Incentive institutions that reward cooperators and punish free-riders are often used to promote

cooperation in public goods games. We show that for incentives of intermediate size, a sanction-

ing institution that punishes the worst players can sustain full cooperation and that a rewarding

institution can promote cooperation only if lower contributors also have the chance to win the

reward. Furthermore, if the incentive institution can provide both reward and punishment, then

it should use reward as much as possible. The group welfare is maximized when the punishment

is just barely larger than the minimum required to obtain the full contribution.
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1 Introduction

Sustaining cooperation in social dilemma games, such as public goods games (PGGs), is a

fundamental challenge in economics and management science. This problem can be solved by

establishing incentive institutions that reward cooperators and punish free-riders (Ostrom, 2005).

Several types of institutions have been proposed to promote cooperation in PGGs. One type

is characterized as an absolute incentive institution, where the institution punishes (or reward)

all individuals whose contribution is less (or higher) than a predefined threshold (Sigmund et

al., 2010; Sasaki et al., 2012; Traulsen et al., 2012; Zhang et al., 2014; Chen et al., 2015;

Dong et al., 2019). A similar institution is that the reward (or punishment) amount increases

(decreases) with the absolute contribution, see e.g., Galbiati, Vertova, (2008) and Putterman

et al. (2011). Both theoretical and empirical studies indicated that absolute punishment can

eliminate extremely selfish behaviors in a cooperative population (Sigmund et al., 2010; Traulsen

et al., 2012; Zhang et al., 2014). In contrast, absolute reward is relatively ineffective in moving

the equilibrium from the selfish one to the cooperative one (Sasaki et al., 2012; Chen et al.,

2015). Another type is characterized as a relative incentive institution, where individuals who

contribute an amount lower than the group average are more likely to be punished, and those

who contribute higher than the group average are more likely to be rewarded (Yamagishi, 1986;

Andreoni, Gee, 2012; Cressman et al., 2012; Cressman et al., 2013; Qin, Wang, 2013; Kamijo

et al., 2014; Wu et al., 2014; Dong et al., 2016). A similar institution would be that the reward

(or punishment) amount increases (decreases) with the relative contribution, see e.g., Falkinger

et al. (2000). For relative punishment, a full contribution becomes a Nash equilibrium if the

institution punishes the lowest contributor such that his or her payoff is slightly lower than that

of the second lowest contributor (Andreoni, Gee, 2012). In contrast, there is much debate on

the effectiveness of relative rewards, and the promotion of cooperation has been rarely observed

in laboratory experiments (Cressman et al., 2012; Cressman et al., 2013; Wu et al., 2014; Dong

et al., 2016).

The use of relative incentives is a common feature in many parts of human society such as in

businesses, government institutions, schools, and competitive sports (Morgan, 2000; Andreoni,

Gee, 2012). Currently, it is unclear what kind of relative rewards can promote cooperation.

Furthermore, if the incentive institution can provide both reward and punishment, is it better

to use more reward or punishment? In this paper, we consider three types of relative incentives,

namely institutional reward (IR), institutional punishment (IP), and a mixture of reward and

punishment (IRP). In line with previous studies, the institution rewards or punishes one player

according to their relative contributions (Yamagishi, 1986; Andreoni, Gee, 2012; Cressman et

al., 2012; Cressman et al., 2013; Qin, Wang, 2013; Kamijo et al., 2014; Wu et al., 2014; Dong

et al., 2016). Specifically, we assume that the probability that a player is rewarded or punished
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has the form of the Tullock contest function. The Tullock contest function has been commonly

used in the rent-seeking game. In this game, n players compete for a prize, and player i wins

the prize with probability P (x) = xsi/
∑n

j=1 x
s
j , where xi is the effort of player i (Tullock,

1980; Hehenkamp et al., 2004; Chowdhury, Sheremeta, 2011; Ewerhart, 2015). In PGGs with

institutional incentives, the prize can be seen as the reward, and the effort can be seen as the

contribution level. The Tullock contest function has a free parameter s, which measures the

probability that a player is rewarded or punished. At s = 0, all players except free-riders (or

except full contributors) are equally likely to be rewarded (or punished). As s approaches infinity,

the institution only rewards the highest contributor and punishes the lowest contributor. Most

previous studies have considered relative incentives with specific s, e.g., Cressman et al. (2012),

Cressman et al. (2013), Wu et al. (2014), and Dong et al. (2016) considered IR, IP, and IRP

with s = 1, and Yamagishi (1986), Andreoni, Gee (2012), and Kamijo et al. (2014) considered

IP with s = ∞. So far, the relation between s and the effectiveness of the incentives is still

unknown.

The main purpose of this paper is to find the optimal relative incentive that is both effective

in promoting cooperation and preserving group welfare. We do this in two steps. The first

step is to calculate the s that optimizes the group contribution at the evolutionarily stable

Nash equilibrium (NE) for fixed amounts of reward and punishment. The second step is to

determine the amounts of reward and punishment that maximize the group welfare. The rest

of this paper is organized as follows. Section 2 introduces the three types of incentives IR, IP,

and IRP. Section 3 analyzes NEs and their evolutionary stabilities for PGGs with IR, IP, and

IRP (related proofs are shown in the Appendices 1-3). Theoretical analysis shows that s should

not be too large in IR so that lower contributors should also have the chance to be rewarded.

In contrast, s should be as large as possible in IP, i.e., the institution should only punish the

lowest contributor. Furthermore, when the incentive institution can provide both reward and

punishment, the group welfare reaches maximum when the punishment is just barely larger than

the minimum required to obtain full contribution. Section 4 discusses the main results.

2 Public goods game with institutional incentives

Consider a PGG with n players, where each has an initial endowment E. Each player decides

how much of his endowment to contribute to a common pool. The total contributions to the

common pool are multiplied by a factor r and split evenly among all n players. Suppose that

player i contributes xi to the common pool (0 ≤ xi ≤ E). Then his payoff can be written as

f(xi,x−i) = E − xi +
r

n

n∑

j=1

xj , (1)

3

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in SER

Si
ng

ap
or

e 
E

co
n.

 R
ev

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

G
O

T
H

E
N

B
U

R
G

 o
n 

05
/2

5/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



where vector x−i represents the contribution of the other n−1 players. For 1 < r < n, f(xi;x−i)

is a decreasing function of xi. In this case, the less the player contributes, the more the player

receives. Thus, free-riding is the unique NE, although full contribution is better for the group.

Let us now introduce the (relative) incentive institution. In line with previous studies, the

institution chooses to reward and/or punish one of the n players (Yamagishi, 1986; Andreoni,

Gee, 2012; Cressman et al., 2012; Qin, Wang, 2013; Kamijo et al., 2014; Wu et al., 2014; Dong

et al., 2016). The probability that a particular subject is rewarded or punished has the form of

the Tullock contest function, i.e., player i wins the reward with probability

PIR(xi,x−i) =
xsRi∑n
j=1 x

sR
j

, (2)

and is punished with probability

PIP (xi,x−i) =
(E − xi)

sP
∑n

j=1(E − xj)sP
. (3)

Thus, PIR is increasing with the contribution and PIP is decreasing with the contribution. In

addition, no player deserves to be rewarded if they all contribute 0, and no one should be

punished if they all contribute E.

We consider the reward amount to be R and the punishment amount to be P . If 0 <∑n
j=1 xj < nE (i.e., not all players contribute 0 or E), then the expected payoff for player i is

f(xi,x−i) = E − xi +
r

n

n∑

j=1

xj +
RxsRi∑n
j=1 x

sR
j

− P (E − xi)
sP

∑n
j=1(E − xj)sP

. (4)

If
∑n

j=1 xj = 0, then no one is rewarded, and the expected payoff for each player is E − P/n.

Finally, if
∑n

j=1 xj = nE, then no one is punished, and the expected payoff for each player is

Er + R/n.

3 Results

We calculate symmetric NEs for PGGs with IR, IP, and IRP, in which all players contribute the

same. Specifically, an interior state 0 < x∗ < E is a NE if and only if f(x, x∗) ≤ f(x∗, x∗) for

all x ∈ [0, E], where

f(x, x∗) = E − x +
r

n
(x + (n− 1)x∗)

+
RxsR

xsR + (n− 1)x∗sR
− P (E − x)sP

(E − x)sP + (n− 1)(E − x∗)sP
. (5)

is the payoff for a player who deviates from the NE strategy x∗.
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In addition, we analyze the evolutionary stabilities of NEs by adaptive dynamics (Dieckmann,

Law, 1996; Hofbauer, Sigmund, 1998; Dong et al., 2015). In the framework of adaptive dynamics,

populations are assumed to be homogeneous, and the average contribution moves towards the

direction in which mutants have the higher invasion payoff. Thus, a stable state of the adaptive

dynamics can prevent the invasion of local mutations. The relationship between NE and fixed

points of adaptive dynamics is well known: an interior NE must be a fixed point, but a fixed

point need not be a NE (Hofbauer, Sigmund, 1998).

Consider a homogeneous population with contribution x. The adaptive dynamics for Eq.(5)

is written as

dx

dt
=

∂f(y, x)

∂y
|y=x = −1 +

r

n
+

RsR(n− 1)

n2x
+

PsP (n− 1)

n2(E − x)
. (6)

where f(y, x) is the payoff for the mutant. Since x ∈ [0, E], we further add two boundary

conditions. The free-riding state x = 0 is a stable fixed point if dx/dt < 0 as x → 0, and the

cooperative state x = E is a stable fixed point if dx/dt > 0 as x→ E [5].

Proposition 1: the reward case R > 0 and P = 0

If R ≥ (n − r)E, then the cooperative state x∗ = E is the unique NE for sR ≥ n/(n − 1).

If R < (n − r)E, then x∗ = RsR(n − 1)/n(n − r) is the unique NE only if sR ≤ n/(n − 1).

Otherwise, the game has no symmetric NE. Furthermore, a NE in IR must be globally stable

under adaptive dynamics.

Proportion 1 indicates that in IR, the optimal sR for promoting cooperation depends on the

incentive size R. For R ≥ (n − r)E, a larger sR can help to sustain cooperation. In this case,

the cooperative state is a NE and is globally stable under adaptive dynamics (see Figure 1b).

However, for R < (n−r)E, sR larger than n/(n−1) is detrimental to stable contribution. Notice

that the contribution at the NE x∗ = RsR(n − 1)/n(n − r) is increasing in sR, the optimal sR

should be n/(n− 1), and the corresponding x∗ is R/(n− r) (see Figure 1a).

Proposition 2: the punishment case R = 0 and P > 0

If P ≥ (n − r)E/n, then the cooperative state x∗ = E is a NE, and it is the unique NE for

sP ≥ n(n− r)E/P (n−1). If P ≤ (n− r)E, then both x∗ = 0 and x∗ = E−PsP (n−1)/n(n− r)

can be a NE. In particular, x∗ = 0 is a NE only if sP ≤ n(n − r)E/P (n − 1), and x∗ =

E − PsP (n − 1)/n(n − r) is a NE only if n/(n − 2) ≤ sP < n(n − r)/EP (n − 1). Otherwise,

the game has no symmetric NE. Furthermore, both the cooperative and the free-riding NEs are

stable (if exist), and the interior NE is unstable.
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(a) (b)R=20 R=50

1.3 3.2 40 1.3 40

Figure 1: Institutional reward. Parameters are taken as E = 20, n = 4, r = 1.6. NE are denoted

by red lines and stable equilibria of Eq.(6) are denoted by solid lines. (a) R = 20. The optimal

sR = 1.3. (b) R = 50. The cooperative state is the only stable NE for sR > 1.3.

Proposition 2 points out a larger sP is always beneficial to cooperation (see Figure 2). When

sP > n(n− r)E/P (n− 1), the free-riding state is no longer a NE, and the cooperative state is

the only stable NE for P ≥ (n− r)E/n.

Proposition 3: a mixture of reward and punishment R > 0 and P > 0

IRP has at most three NEs, a cooperative NE and two interior NEs. The NE condition for

x∗ = E is independent of sP . If P ≥ (n− r)E/n, then the cooperative state x∗ = E is a NE for

all sR. If P + R/n ≥ (n − r)E/n, then the cooperative state x∗ = E is a NE for sR → ∞. If

P +R/n < (n−r)E/n, then the cooperative state x∗ = E cannot be a NE. In particular, the exis-

tence of an interior NE is impossible when sR ≥ n(n−r)E/R(n−1) or sP ≥ n(n−r)E/P (n−1).

Furthermore, the cooperative NE must be stable, and at most one interior NE is stable.

Proposition 3 indicates that if P + R/n ≥ (n − r)E/n, then it is better to reward the

highest and punish the lowest. In this case, the cooperative state is the only NE (see Figure

3b). However, if P + R/n < (n − r)E/n, the cooperative state cannot be a NE. In this case,

IRP may have one stable interior NE for small or intermediate sR and sP , and no NE for large

sR and sP (see Figure 3a).

Let us now consider that the total amount of incentives is fixed at C = R + P . Proposition

3 points out that if P + R/n ≥ (n − r)E/n, then the cooperative state is the only stable NE

for larger sP and sR. This implies that C ≥ (n− r)E/n can sustain full cooperation. We next

investigate the combination of reward and punishment that can maximize the group welfare.

From Eq.(5), the group average payoff at the cooperative state is Er + R/n, i.e., reward can
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(a) (b)P=10 P=20
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2.5 3.2 404.2 6.2 70

Figure 2: Institutional punishment. Parameters are taken as E = 20, n = 4, r = 1.6. NEs are

denoted by red lines and stable equilibria of Eq.(6) are denoted by solid lines. (a) P = 10. The

cooperative state is never a NE. The interior state and the free-riding state are no longer NEs

for sP > 6.2. (b) P = 20. The cooperative state is the only stable NE for sP > 3.2.

help to increase the group welfare. Thus, the optimal amounts of punishment and reward are

P = [(n− r)E − C]/(n− 1) and R = [nC − (n− r)E]/(n− 1), respectively (i.e., the maximum

amount of R that can maintain full contribution), and the incentive institution should only

punish the lowest contributor. Specifically, if C ≥ E(n − r), then reward alone is sufficient to

maintain full contribution, and the use of punishment is redundant.

4 Conclusion

In this paper, we consider PGGs with three types of incentive institutions, namely reward,

punishment, and a mixture of reward and punishment. For each type of incentive, we calculate

NEs and analyse their evolutionary stability. The main purpose is to find the optimal incentive

that is both effective in promoting cooperation and preserving group welfare. Overall, the

effect of incentives on cooperation can be understood in terms of the size of the incentives.

If the incentives are large, full contribution can be the unique NE for all the three incentives.

However, if the incentives are of moderate size, the outcome depends crucially on the probability

of being rewarded or punished. In the case of punishment, the institution should only punish

the worst contributor (Yamagishi, 1986; Andreoni, Gee, 2012). Under the threat of punishment,

rational players will try to avoid being the lowest contributor, so cooperation can be sustained.

In contrast, reward can promote cooperation only if lower contributors also have a chance to be

rewarded. In fact, if the institution only rewards the best contributor, then some subjects may

give up on receiving the reward and free-ride. Finally, if the incentive institution can provide
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R=15 P=5 R=10 P=10
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(a) (b)

C
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o

n

C
o
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tr

ib
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ti
o

n

(d)(c) R=5 P=15

R
ew

ar
d

 p
ro

p
o

rt
io

n

Total incentive

Optimal incentive

1.3 1.7 40 1.31.6 40 0.4

1.3 1.7 40

Figure 3: A mixture of reward and punishment. Parameters are taken as E = 20, n = 4, r = 1.6.

Furthermore, we assume that sR = sP = s in this figure. NEs are denoted by red curves, and

stable equilibria of Eq.(6) are denoted by solid curves. (a) R = 15, P = 5. The cooperative

state is never a NE. (b) R = 10, P = 10. The cooperative state is the only stable NE for

s > 1.3. (c) R = 5, P = 15. The cooperative state is the only stable NE for s > 1.3. (d) The

optimal combination of reward and punishment.
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both reward and punishment, then it should use reward as much as possible. The group welfare

is maximized when the punishment is just barely larger than the minimum required to obtain

full contribution.

We now discuss some aspects of the theoretical models and review related literature.

In our model, the total amount of reward and/or punishment is fixed. It has been shown

that adaptive incentives can also effectively promote cooperation, e.g., the penalty equals to the

payoff difference between the lowest contributor and the second lowest contributor (Andreoni,

Gee, 2012). In fact, our study provides a lower bound of the amount of incentives in sustaining

cooperation, i.e., full contribution cannot be a NE if the total amount of reward and punishment

is less than (n− r)E/n. Furthermore, we indicate that for any given amount of punishment, the

best way to use it is to punish the worst contributor.

In addition, the incentives in our model are exogenous, i.e., both the reward and punishment

are paid by the institution. Some recent studies considered the case of endogenous incentives.

One class of studies assumed that subjects in the PGG have to pay a fee for the institution that

will be used for reward and punishment (Sigmund et al., 2010; Sasaki et al., 2012; Traulsen et

al., 2012; Chen et al., 2015; Yang et al., 2018; Dong et al., 2019). We note that this type of

endogenous setting does not affect our results regarding the NEs and their stabilities, because

adding a constant value to the payoff function will not change the adaptive dynamics. Moreover,

the endogenous setting also does not qualitatively change the efficiencies of the different types

of incentives (i.e., if IR is more efficient than IP in the exogenous setting, then it is also more

efficient in the endogenous setting), although increasing the reward amount can no longer lead

to a higher group payoff and increasing the punishment amount will decrease the social welfare.

Another class of studies considered that subjects can voluntarily choose to join in the game and

pay for reward or punishment (Kosfeld et al., 2009; Aimone et al., 2013; Zhang et al., 2014;

Kopányi-Peuker et al., 2017; Lien, Zheng, 2019). If the payment is voluntary, the problem of

second-order free-riding is raised because the incentive institution itself is a common good that

can be exploited. The mechanism design in this case then becomes a more delicate issue.

Finally, our model assumes that the same amount of reward and punishment plays the same

role in the payoff function. However, empirical studies observed that the responses to reward and

punishment are often asymmetrically, where individuals are often more sensitive to losses than

gains (Fehr, Goette, 2007; Dong et al., 2016; Lien et al., 2017). This phenomenon is captured

by a type of reference-dependent preferences, called loss aversion (Kahneman, Tversky, 1979;

Koszegi, Rabin, 2006; Knetsch et al., 2012; Eil, Lien, 2014; Lien, Zheng, 2015; Zhang, Zheng,

2017). Thus, a possible future development would be to incorporate loss aversion into the payoff

function, and we expect that punishment can be more effective than reward.

In summary, our research deepens the understanding into the role of relative incentives
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in promoting cooperation. In particular, we show that the institution should use reward and

punishment in different ways, i.e., punish the worst and do not only reward the best. This result

is consistent with our life experience. In businesses, most of the employees who perform not

too bad have the chance to get the bonuses (in many companies, bonuses is an important part

of pay). Compared with reward, the use of punishment is less common. Most of employees do

not face the risk of punishment, and only the worst employees will be penalised. Our results

also suggest that the institution should use reward as much as possible, because reward is more

efficient than punishment in promoting social welfare.
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Appendix 1: Proof for Proposition 1

Proof: For IR, Eq.(5) is written as

fR(x, x∗) = E − x +
r

n
(x + (n− 1)x∗) +

RxsR

xsR + (n− 1)x∗sR
. (7)

The cooperative state x∗ = E is a NE if and only if fR(x,E) ≤ fR(E,E) for all 0 ≤ x < E.

Thus, two necessary conditions for the cooperative NE are (i) fR(0, E) ≤ fR(E,E) and (ii)
∂fR(x,E)

∂x |x=E ≥ 0. Condition (i) implies R ≥ (N − r)E, and condition (ii) is equivalent to

∂fR(x,E)

∂x
|x=E = −1 +

r

n
+

RsR(n− 1)

n2E
≥ 0, (8)

where the inequality holds for sR ≥ n
n−1 (with condition (i) R ≥ (N − r)E). In addition, if

sR ≥ n
n−1 (i.e., condition (ii) holds), then

∂2fR(x,E)

∂x2
=

RsR(n− 1)ESR((sR − 1)(n− 1)EsR − xsR)

(xsR + (n− 1)EsR)3
≥ 0 (9)

for all x ∈ [0, E]. This implies that fR(x,E) takes it maximum at either x = 0 or x = E, i.e.,

x∗ = E is a NE if condition (i) holds. Thus, conditions (i) and (ii) are also sufficient for the

cooperative NE.

On the other hand, the cooperative state is never a NE for R < (n−r)E, and an interior NE

may exist. An interior state x∗ is a NE only if it is a local maximum point of fR(x, x∗). Thus,

∂fR(x, x∗)
∂x

|x=x∗ = −1 +
r

n
+

RsR(n− 1)

n2x∗
= 0,

∂2fR(x, x∗)
∂x2

|x=x∗ =
RsR(n− 1)(nsR − 2sR − n)

n3x∗2
≤ 0,

where the first equality yields x∗ = RsR(n−1)
n(n−r) and the second inequality implies sR ≤ n

n−2 .

Furthermore, when all other subjects are using strategy x∗, a subject deviating to free-riding

should not obtain a higher payoff, i.e., fR(0, x∗) ≤ fR(x∗, x∗). This yields x∗ = RsR(n−1)
n(n−r) ≤ R

n−r ,

or equivalently sR ≤ n
n−1 . Overall, the interior state x∗ = RsR(n−1)

n(n−r) is a NE only if sR ≤ n
n−1 .

For the evolutionary stability, if R < n(n−r)E
sR(n−1) , Eq.(6) has a unique interior fixed point

x∗ = RsR(n−1)
n(n−r) , which coincides with the interior NE. Furthermore, it is globally stable since

dx
dt > 0 for x < x∗ and dx

dt < 0 for x > x∗. On the other hand, if R ≥ n(n−r)E
sR(n−1) , then dx

dt ≥ 0 for

all 0 < x ≤ E and the cooperative state x∗ = E is globally stable. This implies that a NE in IR

must be globally stable under adaptive dynamics. �
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Appendix 2: Proof for Proposition 2

Proof: For IP, Eq.(5) is written as

fP (x, x∗) = E − x +
r

n
(x + (n− 1)x∗)− P (E − x)sP

(E − x)sP + (n− 1)(E − x∗)sP
(10)

The cooperative state x∗ = E is a NE if and only if decreasing the contribution cannot obtain a

higher payoff, i.e., fP (x,E) ≤ fP (E,E) for all x < E. Since we always have fP (0, E) ≥ fP (x,E),

x∗ = E is a NE if and only if fP (0, E) ≤ fP (E,E). Thus, we obtain P ≥ E(n−r)
n .

The free-riding state x∗ = 0 is a NE only if a subject deviates to cooperation or slight in-

creases in the contribution cannot obtain higher payoff, i.e., fP (E, 0) ≤ fP (0, 0) and ∂fP (x,0)
∂x |x=0 ≤

0. The first inequality implies P ≤ (n− r)E, and the second inequality implies P ≤ nE(n−r)
sP (n−1) .

Finally, an interior state x∗ is a NE only if it is a local maximum point of fP (x, x∗). Thus,

∂fP (x, x∗)
∂x

|x=x∗ = −1 +
r

n
+

PsP (n− 1)

n2(E − x∗)
= 0,

∂2fP (x, x∗)
∂x2

|x=x∗ = −PsP (n− 1)(nsP − 2sP − n)

n3(E − x∗)2
≤ 0,

where the first equality yields x∗ = E − PsP (n−1)
n(n−r) and the second inequality implies sP ≥

n
n−2 . From the boundary condition x∗ > 0, we obtain sP < nE(n−r)

P (n−1) . Finally, when all other

subjects are using strategy x∗, deviating to full contribution cannot obtain a higher payoff, i.e.,

fP (E, x∗) ≤ fP (x∗, x∗). This yields x∗ = E − PsP (n−1)
n(n−r) ≤ E − P

n−r , or equivalently, sP ≥ n
n−1 .

Overall, a sufficient condition for the interior NE is n
n−2 ≤ sP < nE(n−r)

P (n−1) . In addition, if

sP ≥ nE(n−r)
P (n−1) , then x∗ = E is the unique NE.

For the evolutionary stability, if P ≥ n(n−r)E
sP (n−1) , the cooperative state x = E becomes the only

stable fixed point, and it is also globally stable. If 0 < P < n(n−r)E
sP (n−1) , Eq.(6) has a unique interior

fixed point x∗ = E − PsP (n−1)
n(n−r) , which coincides with the interior NE. Furthermore, dx

dt < 0 for

x < x∗ and dx
dt > 0 for x > x∗. This implies that the interior fixed point must be unstable. In

this case, both the free-riding state x = 0 and the cooperative state x = E are locally stable

fixed points. Specifically, increasing sP can increase the basin of attraction of the cooperative

fixed point. As sP goes to infinity, the interior and the free-riding fixed points vanish, and the

cooperative fixed point becomes globally stable. �
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Appendix 3: Proof for Proposition 3

Proof: The cooperative state x∗ = E is a NE if and only if fRP (x,E) ≤ fRP (E,E) for all

x ∈ [0, E], i.e.,

f(x,E)− f(E,E) = E − x +
r

n
(x− E) +

RxsR

xsR + (n− 1)EsR
− R

n
− P ≤ 0. (11)

Eq.(11) is independent of sP . It can be simplified as E(n−r)
n − P − R

n ≤ 0 as sR → ∞, which

means that x∗ = E is a NE for P + R
n ≥

E(n−r)
n . On the other hand, fRP (x,E)− fRP (E,E) ≤

E − x + r
n(x− E)− R

n − P , which means that x∗ = E is a NE for P ≥ E(n−r)
n .

An interior state x∗ is a NE only if it is a local maximum point of fRP (x, x∗). Thus,

∂f(x, x∗)
∂x

|x=x∗ = −1 +
r

n
+

RsR(n− 1)

n2x∗
+

PsP (n− 1)

n2(E − x∗)
= 0,

∂2f(x, x∗)
∂x2

|x=x∗ = (n− 1)

[
RsR(nsR − 2sR − n)

n3x∗2
+

PsP (2sP − nsP + n)

n3(E − x∗)2

]
≤ 0.

Notice that ∂f(x,x∗)
∂x |x=x∗ = 0 is a second-order equation in x∗, it can have at most two solutions.

However, when sR ≥ n(n−r)E
R(n−1) or sP ≥ n(n−r)E

P (n−1) , it has no solution and ∂f(x,x∗)
∂x |x=x∗ > 0 for all

x∗ ∈ [0, E].

For the evolutionary stability, Eq.(6) can have at most two interior fixed points. We denote

them by 0 < x∗1 < x∗2 < E. Notice that dx
dt > 0 for x→ 0 and x→ E, x = 0 is not a fixed point

and x = E is a stable fixed point. From the continuity of dx
dt , we must have ∂dx/dt

∂x < 0 for x = x∗1
and ∂dx/dt

∂x > 0 for x = x∗2. This implies that x = x∗1 is locally stable, x = x∗2 is unstable, and

x = E is locally stable. Furthermore, if Eq.(6) does not have interior fixed point, then dx
dt > 0

for all x ∈ [0, E], which means that the cooperative fixed point is globally stable. �
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