@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Dong Y, Li C, Tao Y, Zhang B (2015)
Evolution of Conformity in Social Dilemmas. PLoS
ONE 10(9): e0137435. doi:10.1371/journal.
pone.0137435

Editor: Marco Tomassini, Université de Lausanne,
SWITZERLAND

Received: April 19, 2015
Accepted: August 17, 2015
Published: September 1, 2015

Copyright: © 2015 Dong et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This research received financial support
from the National Natural Science Foundation of
China [http://www.nsfc.gov.cn/], no. 31270439, no.
11471311 and no. 11301032) and "the Fundamental
Research Funds for the Central Universities" of China
[http://www.mof.gov.cn/]. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE
Evolution of Conformity in Social Dilemmas

Yali Dong'®, Cong Li?®, Yi Tao®, Boyu Zhang®*

1 School of Statistics, Beijing Normal University, Beijing, China, 2 Département de Mathmatiques et de
Statistique, Université de Montréal, Montreal, Canada, 3 Key Lab of Animal Ecology, Institute of Zoology,
Chinese Academy of Sciences, Beijing, China, 4 Laboratory of Mathematics and Complex Systems, Ministry
of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, China

@ These authors contributed equally to this work.
* zhangby @bnu.edu.cn

Abstract

People often deviate from their individual Nash equilibrium strategy in game experiments
based on the prisoner’s dilemma (PD) game and the public goods game (PGG), whereas
conditional cooperation, or conformity, is supported by the data from these experiments. In
a complicated environment with no obvious “dominant” strategy, conformists who choose
the average strategy of the other players in their group could be able to avoid risk by guaran-
teeing their income will be close to the group average. In this paper, we study the repeated
PD game and the repeated m-person PGG, where individuals’ strategies are restricted to
the set of conforming strategies. We define a conforming strategy by two parameters, initial
action in the game and the influence of the other players’ choices in the previous round. We
are particularly interested in the tit-for-tat (TFT) strategy, which is the well-known conform-
ing strategy in theoretical and empirical studies. In both the PD game and the PGG, TFT
can prevent the invasion of non-cooperative strategy if the expected number of rounds
exceeds a critical value. The stability analysis of adaptive dynamics shows that conformity
in general promotes the evolution of cooperation, and that a regime of cooperation can be
established in an AlID population through TFT-like strategies. These results provide insight
into the emergence of cooperation in social dilemma games.

Introduction

Classical game theory relies on the assumption of perfect rationality (i.e., players always act in
a way to maximize their payoff), but in practice, people often deviate from their individual
Nash equilibrium (NE). The prisoner’s dilemma (PD) game and the public goods game (PGG)
are two of the well-known games in experimental economics, which show that people in the
real system do not always behave rationally. Theoretically, in the PD game, mutual cooperation
yields a better outcome than mutual defection but mutual defection is the only NE. The empiri-
cal studies have shown, however, that about 40% of individuals will display cooperation in the
one-shot PD game. In particular, the cooperation level generally decline over time as individu-
als play the repeated PD game, but sometimes stable mutual cooperation can be also estab-
lished [1,2]. The similar outcomes are also observed in PGG experiments. In the repeated
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PGG, most individuals contribute approximately half of their endowment to the common pool
at the start of the game, and this average contribution will decrease to the level of approxi-
mately 20% after the game is repeated over and over [2-5].

Furthermore, the conforming behaviors widely observed in economic and psychological
experiments also challenge the assumption of perfect rationality [6-9]. Unlike the rational
players whose behaviors are driven by maximizing the payoff, conformists choose the average
strategy of the other players in their group. Why do people match their behaviors to the group
norm? One well known economic explanation is that adopting the average strategy can mini-
mize or dilute risk because it ensures that the individual’s payoff will not be much lower than
the group average [10-12]. Similarly, psychologists have also suggested that conforming behav-
ior occurs because people desire to be liked or accepted by other group members (called nor-
mative influence), or because they desire to be correct when they are unsure of how to act
(called informational influence) [8].

Conforming behavior has been applied to analyze strategies in the repeated PD game and
PGG. In the repeated PD game, tit-for-tat (TFT) should be considered to be one of the most
famous conforming strategies, where a player using this strategy cooperates in the first round
and then does whatever the opponent did in the previous round. TFT was first introduced by
Rapoport, and it is both the simplest and the most successful strategy in Axelrod's computer
tournaments [13,14]. Subsequent empirical studies have found that the success of TFT is not
limited to human society but that it also extends to animal populations [15]. This has encour-
aged biologists to explain the evolution of cooperation by reciprocal interactions based on
repeated encounters [16-19]. Recently, a strategy called “moody conditional cooperation” was
observed in experiments based on the spatial PD game [20-24]. The definition of this strategy
comprises two main ingredients. The first is conformity, i.e. people cooperate more when more
of their neighbors cooperated in the previous round. The second is that the probability that
they display conforming depends on whether they cooperated or defected in the previous
round. On the other hand, in repeated PGG experiments, a conformist (or a conditional coop-
erator) changes his/her contribution in the next round in the direction of the group average
contribution of the current round [4,12,25-27]. Experimental studies have revealed that about
half of the individuals in the repeated PGG can be classified as conformists [4,26,28]. Recent
experiments based on PGG with institutionalized incentives shows that this proportion seems
to be independent of the incentive modes. The proportion of individuals displaying conform-
ing behavior is stabilized at around 50% in all nine treatments [12].

However, the prevalence of conforming behavior in social dilemma games raises some inter-
esting questions. For example, why conforming behavior is so common in these games. This
question has been studied in the context of an infinitely repeated PD game by analyzing adap-
tive dynamics in the set of reactive strategies and stochastic strategies [29-36]. The main result
shows that TFT-like strategies are essential for the emergence of cooperation in a non-coopera-
tive population, but natural selection favors generous tit-for-tat (GTFT) and win-stay lose-shift
(WSLS) in the long run [30,31]. Conversely, some researchers have examined models of con-
tinuous PD game based on the linear reactive strategy method, and found that cooperative
strategies such as TFT and GTFT are more difficult to invade a non-cooperative equilibrium
than in the discrete PD game [37-39]. TFT and WSLS have also been generalized to discrete
PGG [40-43]. In an m-person PGG, a TFTy (0 < k < m) strategist cooperates if at least k indi-
viduals cooperated in the previous round [40-42], and a WSLS strategist cooperates if all the m
group members cooperated or defected in the previous round [43]. Recent studies indicated
that both TFT,,, ; and WSLS can sustain cooperation in sizable group, and sometimes large
group size can facilitate the evolution of cooperation [42,43].
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In this paper, we study the evolution of conformity in the repeated PD game and the
repeated m-person PGG by a selection-mutation process. In our model, a conforming strategy
is defined as a 2D vector (x, p) € [0, 1]°, where x describes the initial action and p measures the
influence of the other players’ choices in the previous round. To be specific, in a repeated PD
game, x is the probability of cooperating in the first round and p is the probability of imitating
the opponent’s action used in the previous round (thus, with probability 1 — p, the player does
not change his/her choice). Similarly, in the repeated PGG, x is the contribution level in the
first round and p is the influence of other group members’ contributions, where a player with
p = 0 will not change his/her contribution via rounds, and a player with p = 1 will always con-
tribute the average contribution of the other members in the previous round. Following this
definition, TFT and suspicious tit-for-tat (STFT) for the repeated PD game are written as (1,1)
and (0,1), respectively, and AlIC (i.e., always cooperate in the PD game or always full contribu-
tion in the PGG) and AlID (i.e., always defect in the PD game or always no contribution in the
PGG) are (1,0) and (0,0), respectively. Depending on the payoff obtained in the repeated game,
a strategy (x, p) may be adopted by more players because of natural selection (or social learn-
ing), and mutation occurs rarely in the evolutionary process. We study this process by consid-
ering the adaptive dynamics on the (x, p)-plane. In both the PD game and the PGG, we show
that conditional altruistic strategies (i.e., x = 1 with large p) and unconditional selfish strategies
(i.e., x = 0 with small p) are bistable if the expected number of rounds is large, where a popula-
tion with high p moves to the cooperative boundary x = 1 and a population with low p moves
to the defective boundary x = 0.

Results
The Prisoner’s Dilemma game

In the standard one-shot PD game, two players are offered a certain payoft, R, for mutual coop-
eration, and a lower payoft, P, for mutual defection. If one player cooperates while the other
defects, then the cooperator gets the lowest payoff, S, and the defector gains the highest payoff,
T. Thus, the payoffs satisfy T > R > P > S. We further make the common assumption 2R >
S+ T > 2P, such that mutual cooperation is the best outcome and mutual defection is the
worst outcome.

Before studying the evolution of conformity in a population, we first consider a repeated PD
game between two players using strategies S; = (x1, p1) and S, = (x5, p,) (called player 1 and
player 2, respectively), where after each round there is a probability w (0 < w < 1) that another
round will be played [17-19]. Thus, the expected number of roundsis # = 1/(1 — w). The
expected payoffs for two players, denoted by E(S;) and E(S,), are calculated in Section A in S1
Text. When p; + p, > 0, i.e,, if at least one of the two players tends to conform, they will finally
obtain a similar single-round expected payoff as # — oco. This implies that conformity can
help to avoid inequality between the two players [44-45]. In particular, when one of p; and p,
equals to 1, |E(S;)—E(S,)| must be less than T — S, which is the maximal payoff difference
between outcomes in the one-shot PD game [10,11]. However, when p; + p, = 0, the payoff dif-
ference between the two players is linearly increasing in 7, where the player with higher initial
cooperative level is exploited by the other.

We now turn to the evolutionary stability of TFT in the set of conforming strategies. Con-
sider a large population that consists of two types of players, S; = (xy, p1) and S, = (1,1) (still
denoted as player 1 and player 2 for simplicity), where a small number of mutants use (x3, p1)
and residents use TFT. Note that a TFT population can be invaded by AllC and other coopera-
tive strategies such as GTFT through neutral drift, TFT is not an evolutionarily stable strategy
[46-47]. We show in Section A in S1 Text, however, that a TFT population can prevent the
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Fig 1. Evolutionary stabilities for TFT in the repeated PD game and the repeated PGG. (a) PD game
with payoffs R=3,P=1,S=0and 3< T <5. ATFT population can prevent the invasion of any non-
cooperative strategy if 1 > max{(T — P)/(R— P),(R—S)/(2R — S — T)} (the blue region). (b) 4-person
PGG with 1 <r<4. ATFT population can prevent the invasion of any non-cooperative strategy if n is above
the blue curve (the blue region).

doi:10.1371/journal.pone.0137435.g001

invasion of any non-cooperative strategy (i.e., (x;, p1) with x; < 1) if 7 > max{(T — P)/(R —
P),(R—S)/(2R—S—T)} (see Fig 1A). As noted by Nowak and Sigmund, TFT plays an
essential role in the emergence and maintenance of cooperation, and it paves the way for more
generous strategies [19,30].

Let us now consider the situation with mutation and investigate the evolutionary dynamics
on the (x, p)-plane. Based on the standard adaptive dynamics model [29,48], we assume that
mutations occur rarely and locally, where a mutant adopts a new strategy that adds a small ran-

dom value on the resident strategy. This assumption implies that a mutant will either vanish or

take over the population before the next mutation occurs, and the mutational jumps are small
that the resident strategy changes continuously [48]. Thus, the evolution of resident strategy (x,
p) in (0,1)* can be described by the following adaptive dynamics:

dc_ R-P Y -2 S+T—R—P

d  20-o0) 2(1-ol-2p) 21— @+ (1-p)%)’ )
dp R Py(l—x w(2p—1)

E—(HT R—P)x(1 )(1_w(p2+(1_p)2))27

where dx/dt < 0 for p — 0 (see Section A in S1 Text). If dx/dt > 0 for p — 1 (this happens
when 7 is large), then there exists a curve p = p (x) separating the (x, p)-plane such that dx/

dt > 0 for p > p (x) and dx/dt < 0 for p < p (x), i.e., x tends to increase when p is large and
tends to decrease when p is small (see Fig 2 and Section A in S1 Text). The intuition is simple:
If your opponent is a conformist, then cooperating in the first round will obtain a higher payoft
because your opponent will follow your choice. If the opponent is not affected by your behav-
iors, however, defection is the best choice. In particular, when R + P = § + T, dx/dt is indepen-
dent of x, and p keeps to a constant. In this case, Eq (1) can be simplified as:

dc«_ R-P T-3S

dt 2l—w) 2(1—w(l—2p))’ 2
P_y

dt

Note that the adaptive dynamics Eqs (1) and (2) are not well defined at the boundaries x = 0
and x = 1 because x cannot increase (or decrease) at x = 1 (or x = 0) even if dx/dt > 0 (or dx/
dt < 0). Therefore, we add two boundary conditions (i) dx/dt|,—¢ = 0 if dx/d#t|,—o < 0 and (ii)
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Fig 2. Phase portrait of the adaptive dynamics Eqs (1) and (2). For each of the three graphs, there is a
curve p = p"(x) (the blue dash curve) separating the (x, p)-plane such that dx/dt > 0 for p > p"(x) and dx/dt < 0
for p < p*(x). Stable equilibria and unstable equilibria of the adaptive dynamics are marked by solid dots and
empty dots, respectively. Trajectories with large initial p converge to x = 1, and with small initial p converge to
x =0. (a) Repeated PD game withn = 6,R=4,P=2,S=0and T = 5. (b) Repeated PD game withn = 6,
R=3,P=1,S=0and T=4.Because R+ P =S + T, there exists a critical p* = 0.1, where a trajectory of Eq
(2) starting from (x, p) converges to (1, p) if p > p", and converges to (0, p) if p < p". (c) Repeated PD game
withn =6,R=3,P=1,S=0and T=5.

doi:10.1371/journal.pone.0137435.g002

dx/dt|,=, = 0 if dx/d#|.—; > 0 to Egs (1) and (2) [29,48]. The dynamic properties of Eqs (1) and
(2) (with the two boundary conditions) are analyzed in Section A in S1 Text (see Fig 2 for the
phase portraits). The main results show that the dynamics always have a continuum of (neu-
tral) stable defective equilibria, {(0,p) | 0 <p < p*(O)}, and a continuum of (neutral) stable
cooperative equilibria, {(1, p) | p (1) < p < 1}, exists if i is large enough such that a TFT popu-
lation cannot be invaded by any non-cooperative strategy. In addition, the dynamics have two
unstable equilibria, (0, p*(O)) and (1, pk(l)).

Since the adaptive dynamics Eqs (1) and (2) cannot be used to describe the change of x at
the boundaries, we apply Monte-Carlo method to investigate the long-run evolution of (x, p) in
[0,12IfR+P<S+ Tand#is large, the population oscillates between the boundaries x = 1
and x = 0 (see Fig 3A). To be specific, a trajectory starting from large initial p will first converge
to the cooperative boundary. As it reaches the cooperative boundary, p may decrease due to
neutral drift, and when p becomes smaller than p (1), the trajectory will move toward the defec-
tive boundary. In contrast, if R + P > S + T, the population can be stabilized at the cooperative
boundary, because a trajectory starting from (1, p) with p slightly smaller than p (1) will con-
verge to a stable cooperative equilibrium (see Figs 2C and 3B).

Public Goods Game

In a single-round m-person PGG, each player in a group of size m is given a fixed endowment
and chooses how much of that endowment to put into a common pool. The total amount in
the pool is multiplied by a factor r with 1 < r < m and then redistributed evenly to each player
in the group. It is to the group’s advantage if all players contribute their total endowment
because r > 1, but each player, given the contributions of the others, does best by contributing
nothing because r < m.

As in the repeated PD game, we consider a repeated m-person PGG, where after each round
there is a probability w (0 < w < 1) that another round will be played, i.e., the expected number
of rounds of the PGG is 7 = 1/(1 — w). If a player using strategy (x, p) contributes y(¢) of his/
her total endowment in round #, and the average contribution of the other m — 1 players is
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@’PLOS ‘ ONE

Evolution of Conformity in Social Dilemmas

0.8 |

0.6 |

04|

0.2

oMl Wl

0 0.5 1 1.5

T

Average Strategy

— Average p 02| — Average p|
— Average x — Average x
O | | | | | |
2 25 3 0 0.5 1 1.5 2 25 3 3.5
X 10° T x 10*

Fig 3. Monte-Carlo simulations for the evolution of conformity in the repeated PD game. The graphs show two typical simulation runs for a population
of size 100. At the beginning of each time step, individuals are randomly divided into 50 pairs and play the repeated PD game. In each time step an average
of 10 individuals are chosen to update, where they imitate actions that perform better with a probability proportional to the payoffs obtained in the repeated
game (i.e., this updating process can be approximately described by the replicator dynamics [48]). In addition, with probability 0.1, one of the 100 individuals
is chosen to adopt a new strategy (i.e., the average individual mutation rate is 0.001) by adding a small random value (draw from Gaussian noise (0, 0.1)) on
its former strategy. (a) Repeated PD game withn = 6, R=3,P=1,S=0and T = 5. The population oscillates between the cooperative boundary x = 1 and the
defective boundary x = 0. (b) Repeated PD game withn = 6, R=4,P=2,S=0and T = 5. The population can be stabilized at the cooperative boundary.

doi:10.1371/journal.pone.0137435.9003

 (t), then his/her contribution in round ¢ + 1 will be y(t + 1) = y(£) + p(y (t) — ¥(t)). Let us
assume that a repeated PGG consists of two types of players S; = (x;, p;) and S, = (x5, p2),
where one player (i.e. the mutant) uses S; and the other m — 1 players (i.e. the residents) use S,.
We denote the expected payoffs for two types of players by E(S;) and E(S,), respectively, and
calculate them in Section B in S1 Text. For conveniences, we still call (1,1) the TFT strategy in
this section. It is clear that a TFT population can be invaded by cooperative strategies through
neutral drift, and we show in Section B in S1 Text that a TFT population can prevent the inva-
sion of any non-cooperative strategies if and only if 7 > (m? — 2m + r)/(r — 1)m (see Fig
1B). In particular, when m = 2, the repeated PGG is equivalent to a continuous PD game with
payoffs (R, S, T, P) = (r, /2, r/2+1, 1) [37,38], and TFT can maintain cooperation if and only
ifn > r/2(r — 1). This condition is consistent with that of the discrete PD game.

We now consider a large homogeneous population with (resident) strategy (x, p), and we
assume that the population moves towards the direction in which mutants have the higher
invasion payoff. Then, the resulting adaptive dynamics on the (x, p)-plane is given by

d_ (=) (m-1
dt  (1—w)m m(l—w< _%))’ (3)
d

with two boundary conditions (i) dx/dt|,— = 0 if dx/dt|—o < 0 and (ii) dx/dt|,-, = 0 if dx/dt|,-,
> 0. Remarkably, the first equation of Eq (3) is independent of x, and the second equation
states that p keeps to be a constant. Thus, similarly to the dynamic behavior of Eq (2), there
exists a critical p*, where a trajectory of Eq (3) starting from (x, p) converges to the stable coop-
erative equilibrium (1, p) if p > p*, and converges to the stable defective equilibrium (0, p) if
p< p* (see Fig 4A and Section B in S1 Text). In addition to adaptive dynamics, Monte-Carlo
simulation also shows that conditional altruistic strategies (i.e., x = 1 with large p) and uncondi-
tional selfish strategies (i.e., x = 1 with small p) are bistable, and the population oscillates
between x = 1 and x = 0 (see Fig 4B).
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Fig 4. The evolution of conformity in the repeated PGG. Repeated PGG with n =10, m =4 and r = 1.6. (a) Phase portrait of the adaptive dynamics Eq (4).
Stable equilibria and unstable equilibria are marked by solid dots and empty dots, respectively.p” = 1/3 (the blue dash line). A trajectory of Eq (4) starting from
(x, p) converges to the stable cooperative equilibrium (1, p) if p > p”, and converges to the unstable defective equiliorium (0, p) if p < p”. (b) Monte-Carlo
simulation result for a population of size 100. At the beginning of each time step, individuals are randomly divided into 25 groups and play the repeated PGG.
In each time step, an average of 10 individuals are chosen to update, where they imitate actions that perform better with a probability proportional to the
payoffs obtained in the repeated PGG. With probability 0.1, one of the 100 individuals is chosen to adopt a new strategy (i.e., the average individual mutation
rate is 0.001) by adding a small random value (draw from Gaussian noise (0, 0.1)) on its former strategy. Monte-Carlo simulation also shows that conditional
altruistic strategies (i.e., x = 1 with large p) and unconditional selfish strategies (i.e., x = 1 with small p) are bistable, and the population oscillates between
x=1andx=0.

doi:10.1371/journal.pone.0137435.9g004

Discussion

Conditional cooperation or conformity has been widely observed in repeated social dilemma
experiments [4,12,20-28]. The prevalence of conformity in these experiments agrees with the
fact that this behavior is common in nature and human society [49,50]. In a complicated envi-
ronment with no obvious “dominant” strategy, conformists should be able to avoid or dilute
risk by guaranteeing that their income will be close to the group average. In this paper, we
study the repeated PD game and the repeated m-person PGG by restricting individual strate-
gies to the set of conforming strategies. We are particularly interested in TFT strategy. In both
the PD game and the PGG, TFT can prevent the invasion of non-cooperative strategies if the
expected number of rounds, 7, exceeds a critical value. We then investigate the adaptive
dynamics in the (x, p)-plane (i.e. the set of conforming strategies). Stability analysis shows that
conformity in general promotes the evolution of cooperation. Trajectories of the adaptive
dynamics starting from initial values with large p converge to the cooperative boundary x = 1.
In particular, if the payoffs of the PD game satisfy R + P > S + T and 7 is large enough, cooper-
ation can be stabilized under the influence of selection and mutation. In contrast, in the PD
game with R + P < § + T and the PGG, the population oscillates between the cooperative state
and the defective state.

In our paper, a conforming strategy is defined by a 2D vector (x, p). In the repeated PD
game, an important class of strategies consists of so-called “memory-one” strategies (or sto-
chastic strategies) [29]. A memory-one strategy is written as a 5D vector (x, pcc, Pcp» Ppos
Ppp), where x is the probability of cooperating in the first round and pcc, pep, ppc and ppp are
the conditional probabilities of playing C after CC, CD, DC and DD interactions, respectively.
Within the 5D unit cube of all memory-one strategies, the conforming strategies form a 2D
subset containing strategies such as AllC, AlID, TFT and STFT (but WSLS and GTFT are not
included). Evolutionary simulations based on the set of all memory-one strategies showed that
TFT-like mutants can invade AlID population, after which TFT will be replaced by more
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generous strategies such as GTFT and AlIC; finally, the population will be undermined by
WSLS [31]. The last two steps in the above process are easy to be understood: TFT is replaced
by GTFT and AlIC because TFT cannot correct mistakes in a noisy environment, and AIIC is
dominated by WSLS because WSLS can exploit cooperators. However, the first step is counter
intuitive because AlID and TFT are bistable under deterministic evolutionary dynamics
[18,19,48]. A great deal of research has been devoted to explaining how TFT can establish a
regime of cooperation in an AlID population [30,42,51-53]. Our paper notes an evolutionary
path from AlID to TFT-like strategies. As shown in Figs 2 and 4, selfish conformists (e.g.
STFT-like strategies) can invade an AlID population through neutral drift. When most of the
players become selfish conformists, cooperative conformists (e.g. TFT-like strategies) will
obtain a higher payoff. The population will then evolve to a conditional cooperative regime,
which cannot be invaded by non-cooperative strategies.

On the other hand, in the continuous PGG, the conforming strategies are included in the
set of “conditional contribution” strategies introduced by Fischbacher and Géchter [4]. To be
specific, a conditional contribution strategy is described by a 4D vector (x, a, b, ¢), where x is
the contribution rate in the first round and the contribution rate in round ¢ + 1 is given by y
(t+1)= ay*(t) + by(t) + ¢, where y*(t) is the average contribution of the other group members
in round t. Following this model, a conforming strategy (x, p) can be represented by (x, p,

(1 - p), 0). Furthermore, in a two-person discrete PGG, strategy (1,1) behaves same as the TFT
strategy of the repeated PD game (that is why we still call (1,1) TFT). However, when m > 2,
TFT) strategies of the discrete PGG cannot be expressed by conforming strategies [40-42].

It is worthwhile to note that our theoretical predictions are consistent with the observations
in recent network PD experiments and repeated PGG experiments. In the network PD experi-
ments, payofts are taken as (R,S,T,P) = (7,0,10,0) (i.e., R+ P < S+ T) and (R,S,T,P) = (3,0,4,1)
(i.e., R+ P =8+ T) [20-22]. In these experiments, Gruji¢ et al. observed two typical strategies,
conditional cooperation and unconditional defection, and the population evolved to full defec-
tion at the end of the games [23-24]. Our simulation result verifies that these two strategies
cannot coexist, and the population will converge to either the cooperative boundary or the
defective boundary (see Figs 2B, 2C and 3B), although our model cannot be applied to analyze
their experiments directly because network structures may play an essential role in decision
making process. On the other hand, Fischbacher and Gachter noted that people’s behaviors in
repeated PGG experiments can be explained by a combination of their own beliefs and the
observation of others’ contributions [4]. They then developed the “conditional contribution”
model, and used a 4D vector (x, 4, b, ¢) to characterize individual strategy. Note that in their
experiments, the sum of a and b is insignificantly different from 1 (a = 0.415, b= 0.569 and a +
b =0.984) and cis small (¢ = 0.118). Thus, people’s behaviors in their experiments can be
approximately described by our model with p = 0.415. In particular, they observed that individ-
ual strategies in different groups have a large degree of heterogeneity, where unconditional
free-riding and conditional cooperation are the two largest types. This exactly matches our the-
oretical result that conditional altruistic strategies and unconditional selfish strategies are both
stable in the repeated PGG.

We analyze the impact of conformity on the evolution of cooperation in social dilemmas by
considering that players’ choices are affected by the options of their group members. In more
realistic populations, different individuals interact with different subsets of the entire popula-
tion, a type of structure that can be described by means of complex networks. It is well known
that network reciprocity can promote cooperation in evolutionary social dilemmas [54-58].
Recent studies indicated that conformity enhances network reciprocity on rings and square lat-
tices because conformists can form an effective surface tension around cooperative clusters
that prevent the invasion of defectors [59,60]. However, conformity hinders the evolution of
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cooperation on scale-free networks [59]. Another study based on a network coordination game
showed that the existence of conformists prevents the freezing of the network in domains with
different conventions, thus leading to global consensus [61]. Furthermore, an appropriate frac-
tion of conformists can release the zero-sum competition in a network extension of matching
pennies, and the population will evolve to pure Nash equilibria [62,63]. In the above studies,
conformists are assumed to adopt the most common strategy in their neighborhoods, but the
evolutionary origin of this behavioral rule has not been explained. Therefore, an interesting
question in the future is to consider the evolution of conformity in social networks. This may
help us to understand individual behaviors in networks based PD and PGG experiments and
why a static network structure has a limited effect on sustaining cooperation [20-22,64-67].

Another possible development would be to study the evolutionary competition between dif-
ferent behavioral rules [60]. To be specific, in the evolutionary game, players can change not
only their actions but also the motivations behind their actions. The behavioral rules we men-
tioned here include not only well-known best response, payoft-driven imitation (e.g. imitate-
the-best and imitate-if-better), aspiration-driven updating or conformity but also some
recently discovered and more delicate strategies, such as extortionate strategies that allow a
player to perform above the average payoff of the group, generous strategies that let a player
perform below the average, and fair strategies that ensure that their own payoff matches the
average [32-36,44,45]. A recent empirical study observed that although extortionists succeeded
against each of their opponents, extortionate strategies resulted in lower payoffs than generous
strategies and TFT in the long-run because most of human subjects adopted TFT-like strategies
[28]. As noted by Duersch et al., TFT (and some payoff-driven imitation rules) can hardly be
beaten, even by very sophisticated opponents, in repeated PD games and PGG in the sense that
there is no strategy that can exploit them as a money pump [10,11]. We expect that the explo-
ration of the competition between different behavioral rules can provide insight into the preva-
lence of conforming behavior in nature and human society.
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