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Abstract—Over the last two decades, self-organized criticality 

in brain activity has been widely discussed. The scale-free 

activation patterns, called neuronal avalanches, provide 

evidence for the postulation that the brain is operating in a 

critical state. Several neurobiological properties found in 

experiments are indicated to be important parameters in 

neuronal avalanches. Here, we developed a dynamic neural 

network model including these neurobiological properties, such 

as the balance between excitation and inhibition, the synaptic 

delay times, and the spatial connection structure, to theoretically 

test and verify the possibility of these neurobiological properties 

as the control parameters in tuning the network through 

criticality in neuronal avalanches. 
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I.  INTRODUCTION 

More and more experiments in vitro and in vivo support the 
idea that cortical networks in brain operates at a critical 
point[1-6]. This phenomenon was called neuronal avalanches 
whose sizes follow a power law distribution. Neuronal 
avalanches have been observed in several animals’ neural 
systems, such as awake monkeys[7], anesthetized rats[8], 
isolated leech ganglion[9], and in human brain oscillations[10]. 

Brain criticality is important to understand the cortical 
neural activity, especially in the process of brain formation, 
neural network formation, synaptic formation, and sleep[11, 
12]. Studies showed that neuronal activities in the cortex might 
be critical arising from the premise that a critical brain can show 
the fastest and most flexible adaptation to a rather unpredictable 

environment[13,14]. In clinical application research, avalanches 
activity patterns provide important information to us to 
understand the mechanism of epilepsy[15]. Studies have shown 
that neurons in the normal brain can regulate neural activity to 
a critical state, while neurons in epileptic patients lose their 
regulatory function, which makes the spontaneous activity of 
cortex not have power-law distribution characteristics and is in 
supercritical state[16,17] 

Many theoretical models of neuronal avalanches have been 
developed, which indicated that neural system would be 
optimized in computational power, information storage, long 
distance communication, dynamic range, and learning at the 
critical point[18, 19]. However, these models did not discuss 

the neurobiological determinants of neuronal avalanches. 
Actually, the dynamics in neural networks, such as the dynamic 
of neurons and the spike-timing-dependent plasticity, have 
great effect on the critical behavior of networks[20]. Recently, 
some models based on the neural dynamics and synaptic 
dynamics were proposed to discuss the neurobiological 
determinants of neuronal avalanches. These researches found 
that in a network with modular connectivity, the state of the 
network was sensitive to synaptic plasticity[21-23]. However, 
the neurobiological determinants of neuronal avalanches are far 
from clear. 

Several neurobiological properties found in experiments, 
such as the balance between excitation and inhibition, the 
synaptic delay times, and the connection structures, are 
indicated to be important parameters in neuronal avalanches[13, 
24]. In this paper, we developed a dynamic neural network 
model including these neurobiological properties to 
theoretically test the possibility of these neurobiological 
properties as the control parameters in tuning the network 
through criticality in neuronal avalanches. 

II. MODEL 

A. Neurons 

We model a neural network of 1000 dynamic neurons, 
including 800 excitatory neurons and 200 inhibitory neurons. 
Each neuron is described by the spiking model[25]: 
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where v denotes the membrane voltage of the neuron; u 
represents a membrane recovery variable, which accounts for 

the activity of +Na and +K . If v = 30mV, then v = c, u = u + d. 

For all the neurons, (b, c) = (0.2, -65). For excitatory neurons, 
(a, d) = (0.02, 8) corresponding to cortical pyramidal neurons 
with the regular spiking pattern. For inhibitory ones, (a, d) = 
(0.1, 2) corresponding to cortical inter-neurons exhibiting fast 
spiking firing patterns. 
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B. The structure of the neural network 

The input signal I of each neuron is composed by two parts. 
One part is the noise input that a random chosen neuron will 
receive an input current at each time step. The other part is the 
synaptic input from the other neurons. The coupled structure of 
the neurons is based on the neural model created by 
Izhikevich[25]. Each neuron has M synapses connecting to 
other neurons. Each synapse randomly connects to a neuron, no 
matter whether the postsynaptic neuron is excitatory or 

inhibitory. The synaptic weight of inhibitory neurons is iw , 

and that of excitatory ones is ew . Particularly, the signal 

conduction delay time is considered in the neural network, 
which makes the neural network not only has a spatial structure 
but also has a temporal structure. In the simulation, the delay 
time of the inhibitory synapse is fixed to 1 ms and the delay 
time of each excitatory synapse is randomly chosen between 1 

ms and max . 

C. Spike-timing-dependent plasticity 

The synaptic connection in the network is basically 
modified according to the spike-timing-dependent plasticity 
(STDP) rule[26]. If a spike from an excitatory pre-synaptic 
neuron arrives at a postsynaptic neuron before the postsynaptic 
neuron fired, then this synapse is potentiated (strengthened). 
On the contrary, if the spike arrives after the postsynaptic 
neuron fired, the synapse is depressed. The magnitude of 
potentiation or depression relies on the time interval between 
the spikes with 
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in which 0.1, 0.12,  20 ,A A ms + − + −= = = =  When a neuron 

fires, the w  is reset to 0.1. Every millisecond (one time step is 

one millisecond), w  decreases by 0.95 w , so that it decays to 

zero as 20/1.0 te− .  

Figure 1.  The synaptic connection in the network is modified according to 

the spike-timing-dependent plasticity (STDP) rule.  

III. RESULTS 

A. The Firing Pattern 

In the resting state, there are no outside input signals, only 
noise signal input. When the input to a neuron accumulated to 
the threshold in a period, the post synaptic neuron fires a spike. 
So, the different spatial and temporal firing patterns of neurons 
in the former time steps will excite different numbers of 
neurons in the following time steps. If many neurons fire in a 
short period, the large firings of inhibitory neurons will inhibit 
the network into a quiet period. After this quiet period, the 
network experiences another firing period. 

Figure 2.  The spatial and temporal firing patterns of neurons.  

B. Critical Size and Duration 

The definition of a neuronal avalanche in this model is as 
same as that in the experiments of Plenz[1]. The simulation 
data are binned at width mst 4= . The spatial pattern of firing 

activity during one time bin t is called a frame. A sequence of 

consecutively active frames that is preceded by a bland frame 
and ended by a blank frame is called an avalanche. Here, we 
also tried the other time bins from 1ms to 8ms, and the result 
shows that the width of the time bin will not impact the power 
law distribution. 

The size of a neuronal avalanche is defined as the total 
number of fired neurons in a neuronal avalanche, and the 
duration of a neuronal avalanche is defined as whole time steps 
(each time step means one millisecond) during a neuronal 
avalanche. Each neuron in the network has M synapses 
connecting to other neurons. STDP rule works during all the 
105 time steps. 

As shown in Figure 3, the results indicated that the 
cumulative probability distribution of the neuronal avalanches 
size was almost a line with characteristic slope of -0.6 (as 
shown in Fig 3A). Using KS statistics tests, we found that 

avalanche size distribution was well fitted by 0.6( )p S S − . 

This means the probability density function of the neuronal 

avalanche size was 1.6( )P S S − , which was quite similar with 

the experiment results [1]. Under the same simulating 
parameters, the cumulative probability distribution of the 



                                                                                                                                          884

 

 

A.

 

B.

 

neuronal avalanches duration was well fitted by 0.9( )p T T −  

(as shown in Fig 3B). This means the probability density 

function of the neuronal avalanche duration was 1.9( )P T T − , 

which was similar with the experiment results of neuronal 
avalanches [1] .  

Figure 3.  The cumulative probability distributions of neuronal avalanches 

size and duration. A.the exponent of the cumulative probability distribution of 
neuronal avalanches size is -0.6. B.the exponent of the cumulative probability 

distribution of neuronal avalanches duration is -0.9.  

IV. TUNING THE NETWORK THROUGH CRITICALITY 

An avalanche is described by its size S  and its duration T . 
Critical theory predicts the probability density distribution 
function forms of these two variables when the system is near 
criticality,  

( )P S S −                                     (3) 

( )P T T −                                     (4) 

  and   are critical exponents of the system, which are 
expected to be independent of the details of the system. For all 
the critical datasets in the simulations, the exponents were 

=1.6 0.2  , =1.9 0.2  . This means that the system is near a 
critical point. 

Criticality theory also predicts that the average avalanche 
size of a certain duration T is given by the scaling relation 

                                           ( ) kS T T                                     (5) 

Furthermore, critical theory predicts the exponent relations 
that the above three exponents must obey the relation,  

-1

-1
k




=                                        (6) 

For the critical datasets in the simulation, 1 3 0 2. .k =   
(p<0.001, two-sample t test, as shown in Figure 4). So, the 
exponent values in the critical samples are consistent with this 
relation. The value for k in the simulation was also consistent 
with that obtained in experiments[27].  

Figure 4.  The average avalanche size of duration follows the scaling relation.  

V. NEUROBIOLOGICAL DETERMINANTS AS CONTROL 

PARAMETERS  

A. The Balance between Excitation and Inhibition as a 

Control Parameter 

For a system operating near the critical point, there is a 
control parameter that can tune the system among the 
subcritical state, the critical state and the supercritical state. In 
the in-vitro experiments, the balance between excitation and 
inhibition is indicated as a control parameter[28]. The neuronal 
avalanches predominantly depend on the GABAA and 
glutamatergic NMDA receptor. When blocking excitatory 
synaptic transmission, the system leads to the subcritical state. 
Conversely, by blocking inhibitory synaptic transmission, the 
system leads to the supercritical state. A balance between 
excitation and inhibition will lead the system accesses the 
critical state.  
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To discuss the mechanism of control parameters found in 
the in-vitro experiments, we examined the balance of excitation 
and inhibition as a control parameter in our model. We 
simulated the neural network in different values of excitatory 
and inhibitory synaptic weights. The simulation results showed 
that when maximum excitatory synaptic weight was 10 and the 
inhibitory synaptic weight was 5, the size distribution of the 
neuronal avalanches followed power law, which meant the 
system was at the critical state. When maximum excitatory 
synaptic weight was 6 and the inhibitory synaptic weight was 5, 
the firing pattern of the whole network showed to be at the sub-
critical state. On the other hand, when maximum excitatory 
synaptic weight was 10 and the inhibitory synaptic weight was 
3, the firing pattern achieved the super-critical state instead (as 
shown in Figure 5).  

Figure 5.  The cumulative probability distributions of neuronal avalanches 

size in different values of excitatory and inhibitory synaptic weights. 

B. The temporal connection structure as a control parameter 

The temporal connection structure in this neural network 
model was composed by the different delay times of the 
excitatory and inhibitory synapses. Our results showed that the 
synaptic delay time also acted as an important control 
parameter for the system to be tunable among the subcritical 
state, the critical state, and the supercritical state. 

We tested the neural network in different synaptic delay 

times. We fixed the delay time of the inhibitory synapses to 1 

ms. The delay time of the excitatory synapses was randomly 

chosen between 1 ms and
max
 , in which 

max
 was the upper 

limit delay time of the excitatory synapse. 
max
   was tunable 

between 5ms and 30ms. The simulation result showed that the 

critical state of the system changed according to
max
 . When 

max
=20ms , the size distribution of the neuronal avalanches 

followed power law, which meant the system was at the critical 

state. When  
max
  decreased to 5ms, the firing pattern of the 

whole network showed to be at the sub-critical state. On the 

other hand, when 
max
  increased to 30ms, the firing pattern 

achieved the super-critical state (as shown in Figure 6).  

Figure 6.  The cumulative probability distributions of neuronal avalanches 

size under different synaptic delay times. 

C. The spatial connection structure as a control parameter 

The spatial connection structure was indicated as a control 
parameter in the in-vitro experiments. In our simulation, the 
network is randomly connected and the spatial connection 
structure was composed by the numbers of the synapses that 
each neuron connects to other neurons. We tested the neural 
network in different numbers of synapses per neuron M. The 
results showed that the spatial connection structure was one of 
the key control parameters for the system to be tunable among 
the subcritical state, critical state and supercritical state. When 
M=100, the size distribution of the neuronal avalanches was 
power law, which meant the system was at the critical state. 
When M=40, the firing pattern of the whole network showed to 
be at the sub-critical state. On the other hand, when M=160, the 
firing pattern achieved the super-critical state instead (as shown 
in Figure 7). 

Figure 7.  The cumulative probability distributions of neuronal avalanches 

size under different numbers of synapses per neuron M. 
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VI. DISCUSSION 

Over the last two decades, self-organized criticality in brain 
activity has been widely discussed. The scale-free activation 
patterns, called neuronal avalanches, provide evidence for the 

postulation that the brain is operating in a critical state. For a 
system that operates in a critical state, there should be a control 
parameter that can tune the system to the critical state. 
Experiments results show that some neurobiological properties 
are critical parameters in neuronal avalanches, such as the 
balance between excitation and inhibition, the synaptic delay 
times, and the connection structures.  Whether these properties 
act as the control parameters in the system needs to be tested 
and verified. 

In this paper, based on a dynamic neural network model, 
we theoretically tested and verified the possibility of the 
balance between excitation and inhibition, the temporal 
connection structure, and the spatial connection structure as the 
control parameters in tuning the network through criticality in 
neuronal avalanches. Here, we want to make further analysis 
on the mechanism that how do these properties act as the 
control parameters. 

The first property is the balance between the excitatory and 
inhibitory neurons. The system experienced a transition among 
the sub-critical state, the critical state and the super-critical 
state according to different ratio of excitatory and inhibitory 
synaptic weights. The main reason is that the response time of 
the excitatory neurons is longer than the inhibitory neurons. 
Therefore, the increase in the firing activity of the excitatory 
neurons will induce more activity of the inhibitory neurons. 
Thus, we conclude that the transition among the three critical 
states depends on the response time of neurons and it also 
indicates that the balance of the excitatory and inhibitory 
neurons is one of the important mechanisms in neuronal 
avalanches.  

The second one is the temporal connection structure due to 
the delay time of synapses. When the upper limit delay time of 
the excitatory synapse was tuned from 5ms to 30ms, the system 
experienced a transition from the sub-critical state to the 
critical state and then to the super-critical state.  The shorter the 
delay times of excitatory synapses, the more inhibitory neurons 
are excited. The large firing of inhibitory neurons will quickly 
inhibit the network into a quiet period, so the system will be at 
a sub-critical state. On the other hand, when the delay times of 
excitatory synapse are longer, less inhibitory neurons are 
excited in the same period, which makes the system to be at a 
super-critical state. 

The third one is the spatial connection structure composed 
by the numbers of the synapses. The result showed that the 
sparsely connected network was at a sub-critical state, and the 
densely connected network was at a super-critical state. Only 
the network of a moderate density of connection was at the 
critical state.  

These results demonstrated that the order parameters of 
self-organized criticality in brain might be neurobiological 
properties, which are quite different from the mechanisms of 
self-organized criticality in other systems. Furthermore, there 
are several other neurobiological properties playing key roles 

in the self-organized criticality in brain, such as the dynamics 
in neurons and synapses, connection strengths, and pattern of 
connections. Whether these properties are the control 
parameters in neuronal avalanches is an important question that 
needs further exploring. 
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